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АНОТАЦІЯ 

Гріневич Я.А. Інформаційно-пошукова система для комп’ютерної гри 

League of Legends. Спеціальність 122 – Комп’ютерні науки. Донецький 

національний університет імені Василя Стуса. Вінниця, 2025. 

У даній роботі представлено розробку інформаційно-пошукової системи, 

яка забезпечує аналіз чемпіонів у грі League of Legends, порівняння їх 

характеристик та генерацію персоналізованих рекомендацій. Система включає 

функціонал побудови команди у режимі драфту, аналітику матчапів, а також 

рекомендаційний модуль з урахуванням класу, складності та типу шкоди 

чемпіонів. Для реалізації використано сучасні вебтехнології, зокрема React, Vite 

та Riot Games API. Проведено тестування інтерфейсу користувача та оцінку 

ефективності системи. 

Ключові слова: League of Legends, інформаційно-пошукова система, 

аналітика гравців, React, рекомендаційна система, драфт чемпіонів, кіберспорт. 

ABSTRACT 

Hrinevych Y.A. An information retrieval system for the computer game 

League of Legends. Specialty 122 – Computer Science. Vasyl Stus Donetsk National 

University. Vinnytsia, 2025. 

This thesis presents the development of an information retrieval system that 

performs champion analysis in League of Legends, compares their characteristics, and 

generates personalized recommendations. The system includes a team builder with 

draft mode, a champion matchup analysis module, and a recommendation engine based 

on role, difficulty, and damage type. Modern web technologies such as React, Vite, 

and the Riot Games API were used during implementation. The system’s user interface 

was tested, and its effectiveness was evaluated. 
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ВСТУП 

 

В останнє десятиліття кіберспорт трансформувався з нішевого захоплення 

в глобальний культурний та економічний феномен, загальна аудиторія якого 

перевищила 580 мільйонів глядачів у 2023 році. Серед багатьох кіберспортивних 

дисциплін League of Legends (LoL) виділяється як одна з найпопулярніших та 

найскладніших командних ігор, з щомісячною аудиторією близько 180 мільйонів 

активних гравців. Чемпіонат світу з League of Legends 2023 року зібрав понад 6,4 

мільйона одночасних глядачів та призовий фонд у 2,4 мільйона доларів, що 

свідчить про масштаб та значущість цієї гри на світовій арені. 

Популярність та конкурентна природа League of Legends створили 

потужний запит на аналітичні інструменти, які дозволяють гравцям різного рівня 

підвищувати ефективність своєї гри через доступ до релевантної інформації та 

рекомендацій. Особливості ігрової механіки LoL, включаючи постійне 

оновлення балансу, велику кількість чемпіонів (168 станом на 2024 рік), 

комплексну систему предметів та рун, створюють середовище, де прийняття 

обґрунтованих рішень є критичним фактором успіху. 

Традиційні джерела інформації, такі як ігрові вікі, форуми та відеоуроки, 

надають фрагментовані та часто неактуальні дані, що ускладнює процес пошуку 

та аналізу для пересічного гравця. Існуючі аналітичні платформи, такі як OP.GG, 

U.GG та Champion.GG, пропонують обмежений функціонал для порівняння 

чемпіонів та аналізу їх ефективності у різних контекстах гри. Більшість з цих 

платформ фокусуються на загальній статистиці, не надаючи персоналізованих 

рекомендацій відповідно до індивідуального стилю гри, рівня навичок та 

преференцій користувача. 

Актуальність розробки спеціалізованої інформаційно-пошукової системи 

для League of Legends обумовлена необхідністю створення інструменту, який би 

інтегрував дані з різних джерел, забезпечував комплексний аналіз ігрових 

механік та надавав персоналізовані рекомендації, адаптовані до потреб 

конкретного користувача. Такий інструмент має потенціал значно покращити 
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ігровий досвід для мільйонів гравців, допомагаючи їм приймати більш 

обґрунтовані рішення щодо вибору чемпіонів, предметів, рун та стратегій гри. 

Метою цієї роботи є розробка інформаційно-пошукової системи для гри 

League of Legends, що забезпечує аналіз чемпіонів, рекомендації щодо вибору (з 

урахуванням ролей, складності та типу шкоди), порівняння характеристик різних 

чемпіонів та симуляцію процесу драфту команд. Система спрямована на 

задоволення потреб гравців різного рівня: від новачків, які потребують базової 

інформації та рекомендацій щодо простих чемпіонів, до досвідчених гравців, які 

шукають детальний аналіз нішевих стратегій та оптимізацію своїх тактик. 

Для досягнення цієї мети необхідно вирішити наступні завдання: 

− Провести аналіз існуючих інформаційно-пошукових систем для 

кіберспортивних дисциплін та виявити їх переваги та обмеження. 

− Дослідити особливості ігрової механіки League of Legends як об'єкта 

аналізу та визначити ключові параметри для класифікації та порівняння 

чемпіонів. 

− Сформулювати вимоги до інтерфейсу та функціоналу системи на 

основі потреб цільової аудиторії. 

− Розробити архітектуру системи, що включає модуль team builder з 

draft mode, модуль порівняльного аналізу чемпіонів та рекомендаційний модуль. 

− Реалізувати алгоритми обробки та візуалізації ігрових даних, що 

забезпечують ефективний аналіз характеристик чемпіонів. 

− Створити рекомендаційну систему, яка враховує класи (roles), 

складність (difficulty) та тип шкоди (damage type) чемпіонів для надання 

персоналізованих рекомендацій. 

− Розробити інтуїтивний та адаптивний користувацький інтерфейс, що 

забезпечує зручний доступ до всіх функцій системи на різних пристроях. 

− Провести тестування системи для оцінки ефективності та зручності 

користувацького інтерфейсу. 

Об'єктом дослідження є процес аналізу та візуалізації даних у контексті 

комп'ютерних ігор та кіберспорту. 
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Предметом дослідження є методи та технології розробки інформаційно-

пошукових систем для аналізу чемпіонів у грі League of Legends. 

Наукова новизна роботи полягає в розробці комплексного підходу до 

аналізу та рекомендації чемпіонів у League of Legends, що інтегрує методи 

обробки даних, машинного навчання та інтерактивної візуалізації. 

Запропонований підхід дозволяє враховувати індивідуальні особливості гравця 

для генерації персоналізованих рекомендацій та надання релевантної 

аналітичної інформації. 

Практична значущість роботи полягає у створенні інформаційно-

пошукової системи, що може бути використана мільйонами гравців League of 

Legends для підвищення ефективності їх ігрового процесу. Система може стати 

корисним інструментом для гравців різного рівня: від новачків до професіоналів, 

а також для аналітиків, тренерів та коментаторів кіберспортивних змагань. 

Методи дослідження включають аналіз літератури та існуючих рішень, 

проектування архітектури програмного забезпечення, розробку алгоритмів 

обробки та візуалізації даних, прототипування та тестування користувацького 

інтерфейсу. 

Структура роботи. Робота складається зі вступу, трьох розділів, висновків, 

списку використаних джерел та додатків. У першому розділі проведено аналіз 

теоретичних основ розробки інформаційно-пошукових систем для комп'ютерних 

ігор, включаючи аналіз існуючих рішень, особливостей ігрової механіки League 

of Legends та вимог до інтерфейсу та функціоналу. У другому розділі описано 

методологію розробки системи, включаючи вибір технологічного стеку, 

проектування архітектури та методи обробки та візуалізації ігрових даних. У 

третьому розділі представлено практичну реалізацію системи, включаючи 

функціонал team builder з draft mode, порівняльний аналіз чемпіонів, 

рекомендаційну систему, а також результати тестування користувацького 

інтерфейсу. 



8 
 

РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ РОЗРОБКИ ІНФОРМАЦІЙНО-

ПОШУКОВИХ СИСТЕМ ДЛЯ КОМП’ЮТЕРНИХ ІГОР 

 

1.1 Аналіз сучасних інформаційно-пошукових систем для кіберспортивних 

дисциплін 

 

Розвиток кіберспорту як глобального культурного та економічного 

феномену супроводжується стрімким зростанням спеціалізованих 

інформаційно-пошукових систем, що забезпечують аналітичну підтримку як 

професійних гравців, так і широкої аудиторії ентузіастів. Сучасні системи для 

кіберспортивних дисциплін відрізняються від класичних інформаційно-

пошукових систем специфічним фокусом на динамічних ігрових даних, 

необхідністю обробки інформації в реальному часі та потребою в 

спеціалізованих метриках оцінки ефективності ігрового процесу. 

У сегменті MOBA-ігор (Multiplayer Online Battle Arena), до яких належить 

League of Legends, домінуючі позиції займають такі платформи як OP.GG, U.GG, 

Mobalytics та Champion.GG. Кожна з цих систем використовує власні методики 

збору, агрегації та візуалізації даних про ігровий процес. Зокрема, OP.GG 

здійснює збір та аналіз даних з офіційних серверів гри, забезпечуючи 

користувачів статистикою щодо популярності чемпіонів, їх співвідношення 

перемог та поразок (win rate), частоти використання певних предметів та рун. 

U.GG відрізняється більш детальним підходом до аналізу матчапів 

(протистояння певних чемпіонів) та оптимізацією пошуку за рейтинговими 

лігами гравців. 

Особливої уваги заслуговує платформа Mobalytics, яка впровадила 

концепцію GPI (Gamer Performance Index) – комплексну систему оцінки 

ефективності гравця за вісьмома ключовими показниками: фармінг, 

агресивність, живучість, командна гра, бачення, різносторонність, витривалість 

та послідовність [1, с.154-156]. Ця методика дозволяє не лише аналізувати 
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поточний стан ігрової мета-гри, але й надавати персоналізовані рекомендації для 

покращення індивідуальних навичок гравця. 

Системи Blitz.gg та Facecheck представляють нове покоління інструментів, 

які інтегруються безпосередньо в клієнт гри та пропонують рекомендації в 

реальному часі під час вибору чемпіонів та предметів. Таке рішення дозволяє 

користувачам отримувати актуальну інформацію без необхідності перемикання 

між грою та зовнішніми ресурсами, що суттєво підвищує зручність 

використання. 

В екосистемі професійного кіберспорту особливе місце займають 

аналітичні платформи, розраховані на команди та аналітиків, такі як Shadow.gg 

та GGRecon. Ці системи забезпечують поглиблений аналіз професійних матчів, 

включаючи теплові карти переміщень гравців, візуалізацію ключових моментів 

гри та комплексні статистичні звіти. Такі інструменти активно 

використовуються тренерами та аналітиками команд для розробки стратегій та 

тактик гри. 

Спільною рисою всіх розглянутих систем є використання офіційного Riot 

Games API як основного джерела даних. При цьому, кожна платформа реалізує 

власні алгоритми агрегації та обробки інформації, які становлять комерційну 

таємницю розробників. Відмінності в методах аналізу часто призводять до 

різних оцінок ефективності чемпіонів та стратегій гри, що створює певну 

поліфонію думок в інформаційному полі гри. 

Аналіз тенденцій розвитку інформаційно-пошукових систем для 

кіберспортивних дисциплін демонструє зростання інтересу до машинного 

навчання та штучного інтелекту як інструментів прогнозування результатів 

матчів та оптимізації ігрових стратегій. Зокрема, Mobalytics та U.GG 

впроваджують елементи предиктивної аналітики для оцінки потенційного 

результату драфту (вибору чемпіонів) та рекомендації оптимальних контр-піків. 

Іншою значущою тенденцією є розширення функціональності систем у 

напрямку соціальних функцій та навчальних ресурсів. Так, Mobafire та 

ProGuides, окрім аналітичної інформації, пропонують користувачам платформу 
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для обміну гайдами та відеоуроками, що сприяє формуванню спільноти навколо 

ресурсу. Цей підхід дозволяє залучати більш широку аудиторію та підвищувати 

залученість користувачів. 

Важливим аспектом сучасних інформаційно-пошукових систем для 

кіберспортивних дисциплін є адаптація до змін ігрового балансу. League of 

Legends регулярно оновлюється, що призводить до значних змін в ефективності 

чемпіонів та предметів. Ефективні системи мають швидко адаптуватися до таких 

змін та надавати актуальну інформацію користувачам, що досягається за рахунок 

автоматизованих алгоритмів переоцінки метрик та оперативного оновлення 

рекомендацій [2, с.19]. 

Аналіз інформаційно-пошукових систем для кіберспортивних дисциплін 

дозволяє виділити ключові функціональні елементи, необхідні для ефективного 

аналізу ігрових даних: система моніторингу актуального стану мета-гри, засоби 

оцінки ефективності окремих чемпіонів та їх синергії в командних композиціях, 

інструменти для аналізу протистояння конкретних чемпіонів, механізми 

рекомендацій щодо оптимального вибору чемпіонів та предметів відповідно до 

контексту гри. Саме ці компоненти формуватимуть основу інформаційно-

пошукової системи, що розробляється у рамках цього дослідження. 

 

1.2 Особливості ігрової механіки League of Legends як об’єкта аналізу 

 

League of Legends (LoL) становить собою комплексну 

багатокористувацьку онлайн-гру жанру MOBA, розроблену компанією Riot 

Games. Особливості її ігрової механіки формують унікальне середовище для 

аналітичного дослідження, що потребує спеціалізованих підходів до збору та 

обробки даних. Розуміння цих особливостей є фундаментальним для побудови 

ефективної інформаційно-пошукової системи, здатної адекватно інтерпретувати 

та представляти ігрові дані. 

Центральним елементом ігрової механіки LoL є взаємодія двох команд по 

п'ять гравців, кожен з яких контролює унікального чемпіона з власним набором 
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здібностей. Станом на 2024 рік у грі представлено понад 160 чемпіонів, що 

створює надзвичайно великий простір для аналізу взаємодій та стратегічних 

рішень. Кожен чемпіон характеризується низкою параметрів, включаючи базові 

статистичні показники (здоров'я, броня, сила атаки тощо), пасивні та активні 

здібності, а також унікальну механіку взаємодії з ігровим середовищем та 

іншими чемпіонами. 

Складність аналізу ігрової механіки LoL зумовлюється регулярними 

оновленнями гри (патчами), які вносять зміни в баланс чемпіонів, предметів та 

загальні аспекти ігрового процесу. Ці зміни можуть суттєво впливати на 

ефективність певних стратегій та комбінацій чемпіонів, що вимагає від 

інформаційно-пошукової системи здатності швидко адаптуватися до нових умов 

мета-гри. Поняття "мета-гри" в контексті LoL означає домінуючі на певному 

етапі розвитку гри стратегії, чемпіони та предмети, які вважаються найбільш 

ефективними у поточних умовах гри [3, с.16-17]. 

Особливим елементом ігрової механіки LoL, що потребує уваги при 

розробці аналітичної системи, є фаза драфту. Драфт — це процес вибору 

чемпіонів командами перед початком матчу, що часто відбувається за 

принципом почергових вибірок та блокувань (банів). Ця фаза має стратегічне 

значення, оскільки дозволяє командам формувати синергетичні композиції та 

контрувати вибір опонентів. Аналіз ефективності драфту вимагає врахування не 

лише індивідуальних характеристик чемпіонів, але й їх взаємодії в командних 

композиціях та проти конкретних опонентів. 

League of Legends характеризується також специфічною рольовою 

структурою, де кожен гравець виконує одну з п'яти основних ролей: верхня лінія 

(Top), джунглі (Jungle), середня лінія (Mid), нижня лінія — керрі (ADC) та 

підтримка (Support). Кожна роль має власні функціональні обов'язки та 

очікування щодо стилю гри. Більшість чемпіонів оптимізовані для конкретних 

ролей, хоча певна гнучкість існує. Ця рольова структура формує додатковий 

вимір для аналізу даних, оскільки ефективність чемпіона часто залежить від ролі, 

в якій він використовується. 
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Ігрова економіка LoL, що включає збір ресурсів (золота та досвіду) та 

придбання предметів, становить ще один важливий аспект механіки гри для 

аналізу. Вибір предметів значно впливає на характеристики чемпіона та може 

адаптуватися відповідно до ігрової ситуації та складу команд. Аналіз 

оптимальних наборів предметів для чемпіонів у різних контекстах є важливим 

елементом інформаційно-пошукової системи, що вимагає розуміння взаємодії 

базових характеристик чемпіонів з ефектами предметів. 

Система рун і талантів у LoL дозволяє гравцям налаштовувати свого 

чемпіона ще до початку матчу, обираючи додаткові бонуси та ефекти, що 

відповідають стилю гри та стратегічним цілям. Руни можуть суттєво впливати на 

ігровий процес, підсилюючи сильні сторони чемпіона або компенсуючи його 

слабкості. Аналіз ефективності різних комбінацій рун для конкретних чемпіонів 

і ситуацій також є важливим компонентом комплексної інформаційно-

пошукової системи. 

Особливої уваги заслуговує динамічна природа мета-гри LoL, яка постійно 

еволюціонує не лише внаслідок патчів від розробників, але й завдяки інноваціям 

гравців, які відкривають нові стратегії та комбінації. Цей аспект вимагає від 

інформаційно-пошукової системи не лише реактивного аналізу поточних даних, 

але й проактивного виявлення тенденцій та потенційно ефективних стратегій, що 

ще не стали мейнстрімом [4, с.3-7]. 

Регіональні особливості ігрового стилю також становлять важливий 

елемент аналізу. Різні сервери LoL (Північна Америка, Європа, Корея, Китай 

тощо) часто демонструють відмінні підходи до гри, преференції щодо чемпіонів 

та стратегій. Ці відмінності мають враховуватися при аналізі даних для 

забезпечення релевантності рекомендацій для конкретної аудиторії. 

В контексті технічного аналізу слід також враховувати різні рівні 

кваліфікації гравців, від новачків до професіоналів. Ефективність чемпіонів та 

стратегій може суттєво відрізнятися залежно від рангу гравців, оскільки різні 

рівні гри характеризуються різним розумінням механік, командною 

координацією та індивідуальною майстерністю. Інформаційно-пошукова 
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система повинна враховувати цей фактор, надаючи релевантні рекомендації 

відповідно до рівня користувача. 

Таким чином, особливості ігрової механіки League of Legends формують 

багатовимірний простір для аналізу, що вимагає комплексного підходу до збору, 

обробки та інтерпретації даних [5, с.18-19]. Ефективна інформаційно-пошукова 

система має враховувати всі ці аспекти, забезпечуючи користувачам актуальну 

та релевантну інформацію для прийняття стратегічних рішень в ігровому 

процесі. 

 

1.3 Вимоги до інтерфейсу та функціоналу систем для аналізу ігрових даних 

 

Розробка ефективної інформаційно-пошукової системи для аналізу ігрових 

даних League of Legends потребує чіткого розуміння вимог до інтерфейсу та 

функціоналу таких систем. Ці вимоги формуються на основі аналізу потреб 

цільової аудиторії, особливостей ігрового процесу та сучасних тенденцій у 

розробці користувацьких інтерфейсів для ігрових додатків. Правильно 

спроектований інтерфейс та функціонал забезпечують не лише зручність 

використання системи, але й ефективність аналізу та інтерпретації ігрових даних. 

Перша ключова вимога до інтерфейсу – інтуїтивність та легкість навігації. 

Користувачі інформаційно-пошукових систем для ігрових даних часто 

потребують швидкого доступу до інформації, особливо під час фази вибору 

чемпіонів перед матчем, коли час на прийняття рішень обмежений. Інтерфейс 

має забезпечувати миттєвий доступ до ключових даних через мінімальну 

кількість взаємодій [6, с.46-47]. Цього можна досягти через логічну структуру 

меню, використання контекстуальних підказок та інтерактивних елементів, що 

адаптуються до поточних дій користувача. 
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Рисунок 1.1 - Схема взаємодії користувача з модулями системи 

 

На рис. 1.1 представлена загальна схема взаємодії користувача з 

основними модулями інформаційно-пошукової системи. Схема візуалізує типові 

сценарії використання та інформаційні потоки між користувачем і 

функціональними блоками системи, демонструючи, як реалізуються принципи 

інтуїтивної навігації в контексті різних задач. 

Друга важлива вимога – адаптивність інтерфейсу до різних сценаріїв 

використання. Система може використовуватися як під час активної гри (для 

швидкого отримання рекомендацій), так і в режимі детального аналізу (для 

вивчення статистики та стратегій). У першому випадку інтерфейс має бути 

мінімалістичним та зосередженим на ключовій інформації, у другому – надавати 

доступ до розширених даних та аналітичних інструментів. Реалізація різних 

режимів відображення та налаштування користувацького інтерфейсу дозволяє 

задовольнити різні сценарії використання. 

Третя вимога – ефективна візуалізація даних. Ігрові дані League of Legends 

є багатовимірними та комплексними, тому їх представлення має бути 

структурованим та наочним. Використання графіків, діаграм, теплових карт та 

інших візуальних елементів дозволяє користувачам швидко сприймати та 

аналізувати великі обсяги інформації. Особливо важливим є візуальне 

представлення порівняльних даних, таких як сильні та слабкі сторони чемпіонів, 

ефективність різних стратегій та статистика матчапів [7, с.22]. 
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Четверта вимога – персоналізація та контекстуалізація даних. Користувачі 

мають різні рівні навичок, преференції щодо стилю гри та улюблених чемпіонів. 

Інформаційно-пошукова система повинна враховувати ці фактори, надаючи 

персоналізовані рекомендації та аналіз. Це може включати налаштування 

інтерфейсу відповідно до індивідуальних уподобань, фільтрацію даних за 

релевантними для користувача параметрами та формування рекомендацій на 

основі історії ігор конкретного гравця. 

П'ята вимога – інтеграція з ігровим клієнтом або можливість зручного 

використання паралельно з грою. Користувачі часто звертаються до 

інформаційно-пошукових систем безпосередньо під час сесії гри, тому важливо 

забезпечити мінімальні ресурсні витрати та можливість швидкого перемикання 

між грою та системою. Ідеальним рішенням є інтеграція через API Riot Games, 

що дозволяє системі отримувати дані безпосередньо з гри та надавати 

рекомендації в контексті поточної ігрової сесії. 

Шоста вимога – актуальність та релевантність даних. З огляду на 

динамічний характер League of Legends та регулярні зміни в балансі гри, система 

має забезпечувати оперативне оновлення даних відповідно до останніх патчів. 

Інтерфейс повинен чітко індикувати актуальність інформації, що 

відображається, та надавати можливість фільтрації даних за різними періодами 

та версіями гри. Це дозволяє користувачам оцінювати тенденції змін 

ефективності чемпіонів та стратегій з плином часу. 

Сьома вимога – багаторівневе представлення інформації. Різні користувачі 

потребують різної глибини аналізу: від базових рекомендацій щодо вибору 

чемпіонів до детального аналізу синергії здібностей, таймінгів та специфічних 

ігрових ситуацій. Інтерфейс має забезпечувати ієрархічну структуру доступу до 

інформації, дозволяючи користувачу поступово заглиблюватися в деталі 

відповідно до своїх потреб. Це досягається через використання розгортаємих 

розділів, вкладок, спливаючих вікон та інших елементів, що дозволяють 

керувати обсягом видимої інформації. 
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Восьма вимога – інтерактивність та зворотний зв'язок. Користувачі 

повинні мати можливість взаємодіяти з даними, експериментувати з різними 

параметрами та отримувати миттєвий зворотний зв'язок. Це може включати 

можливість симуляції драфту, експериментування з різними комбінаціями 

чемпіонів, рун та предметів, а також порівняння різних стратегічних підходів. 

Інтерактивні елементи інтерфейсу, такі як перетягування, слайдери та 

переключателі, забезпечують зручний механізм для такої взаємодії [8, с.27-28]. 

Дев'ята вимога – доступність та інклюзивність інтерфейсу. Система має 

бути доступною для користувачів з різними можливостями, включаючи людей з 

порушеннями зору, моторики або когнітивними особливостями. Це досягається 

через використання адаптивного дизайну, налаштування контрастності та 

розміру елементів, альтернативних методів введення та інших практик 

інклюзивного дизайну. Крім того, система має підтримувати мультимовний 

інтерфейс, враховуючи глобальний характер аудиторії League of Legends. 

Десята вимога – інтеграція освітніх елементів та пояснень. Для нових 

гравців або користувачів, які прагнуть поглибити своє розуміння гри, система 

має надавати не лише сухі дані, але й пояснення та контекст. Це включає 

роз'яснення термінології, обґрунтування рекомендацій та освітні матеріали щодо 

ігрових механік та стратегій. Такий підхід робить систему корисною не лише для 

швидкого отримання конкретних даних, але й для загального розвитку ігрових 

навичок користувача. 

Таким чином, ефективна інформаційно-пошукова система для аналізу 

ігрових даних League of Legends має поєднувати інтуїтивний, адаптивний та 

інклюзивний інтерфейс з багатофункціональним аналітичним функціоналом, що 

забезпечує доступ до актуальних та персоналізованих даних у різних сценаріях 

використання. Реалізація всіх цих вимог створює платформу, що дійсно 

підвищує ігровий досвід користувачів та допомагає їм приймати обґрунтовані 

стратегічні рішення. 
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РОЗДІЛ 2. МЕТОДОЛОГІЯ РОЗРОБКИ СИСТЕМИ ДЛЯ АНАЛІЗУ 

ЧЕМПІОНІВ У LEAGUE OF LEGENDS 

 

2.1 Вибір технологічного стеку для реалізації (React, Vite, LoL API) 

 

Розробка інформаційно-пошукової системи для аналізу даних League of 

Legends вимагає ретельного підходу до вибору технологічного стеку, який 

забезпечить оптимальну продуктивність, масштабованість та зручність 

розробки. Сучасні вимоги до таких систем включають швидкість відображення 

інтерфейсу, ефективну обробку даних та гнучкість при впровадженні нових 

функцій. У контексті цих вимог обґрунтованим вибором для фронтенд-частини 

став React у поєднанні з інструментом збірки Vite, а для отримання ігрових даних 

– офіційний League of Legends API. 

React, розроблений та підтримуваний компанією Facebook (Meta), є 

провідною JavaScript-бібліотекою для створення користувацьких інтерфейсів. 

Ключовою перевагою React у контексті розробки інформаційно-пошукової 

системи для LoL є його компонентна архітектура, яка дозволяє створювати 

модульні, перевикористовувані елементи інтерфейсу. Це особливо важливо для 

системи з множинними представленнями даних про чемпіонів, статистику, 

рекомендації та порівняння, де одні й ті ж компоненти можуть 

використовуватися в різних контекстах. Наприклад, картка чемпіона може бути 

використана як у галереї чемпіонів, так і в модулі порівняння або рекомендацій. 

Віртуальний DOM (Document Object Model), що є однією з ключових 

концепцій React, забезпечує високу продуктивність при оновленні інтерфейсу, 

що критично важливо для відображення динамічних даних та інтерактивних 

елементів аналітичної системи. Замість прямого маніпулювання DOM, React 

створює легковагу віртуальну копію, визначає мінімально необхідні зміни та 

ефективно застосовує їх до реального DOM. Це особливо цінно при відображенні 

великих обсягів даних, таких як статистика чемпіонів або розгорнуті порівняльні 

таблиці. 
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Іншою важливою перевагою React є потужна екосистема та спільнота, що 

надає доступ до численних бібліотек та компонентів, які можуть бути інтегровані 

в проект. Для візуалізації статистичних даних були обрані бібліотеки Recharts та 

D3.js, які дозволяють створювати інтерактивні графіки та діаграми для наочного 

представлення показників ефективності чемпіонів, тенденцій win rate та інших 

метрик. Для управління станом додатку обрано комбінацію React Context API для 

локального стану та Redux для глобального стану додатку, що забезпечує 

передбачуваний потік даних та спрощує відлагодження. 

Важливим компонентом обраного технологічного стеку є Vite – сучасний 

інструмент збірки, який забезпечує надзвичайно швидкий час запуску сервера 

розробки та оптимізовану збірку для виробничого середовища. Vite 

використовує нативні ES модулі (ESM) під час розробки, що дозволяє уникнути 

необхідності повної пересилки бандла при кожному оновленні коду, значно 

прискорюючи цикл розробки. Для проекту з великою кількістю компонентів та 

модулів це дає суттєвий виграш у продуктивності розробки. 

Порівняно з традиційними інструментами збірки, такими як Webpack, Vite 

забезпечує миттєвий холодний старт сервера розробки та моментальне 

оновлення при зміні коду, що особливо важливо при розробці складних 

інтерфейсів для візуалізації ігрових даних. Крім того, Vite має вбудовану 

підтримку TypeScript, CSS препроцесорів та інших сучасних інструментів 

розробки без необхідності додаткової конфігурації. Для стилізації компонентів у 

проекті використано комбінацію CSS Modules та Tailwind CSS, що забезпечує 

ізоляцію стилів та швидке прототипування інтерфейсу [9, с.26]. 

Центральним елементом технологічного стеку для отримання даних є Riot 

Games API, офіційний інтерфейс програмування додатків, що надає доступ до 

ігрових даних League of Legends. API надає різноманітні ендпоінти для 

отримання інформації про чемпіонів, предмети, руни, матчі та статистику 

гравців. Для аутентифікації використовується API-ключ, який необхідно 

отримати через портал розробників Riot Games. Важливо враховувати 
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обмеження швидкості (rate limits), що накладаються на запити: 20 запитів кожні 

1 секунду та 100 запитів кожні 2 хвилини для стандартних ключів розробника. 

З огляду на обмеження API та необхідність забезпечення швидкого відгуку 

інтерфейсу, у системі реалізовано стратегію кешування даних. Для управління 

кешем використано комбінацію localStorage для довготривалого зберігання 

статичних даних (інформації про чемпіонів, предмети, руни) та React Query для 

управління станом серверних даних, їх кешування та синхронізації. React Query 

забезпечує автоматичне повторне використання даних, фонове оновлення та 

інвалідацію кешу, що критично важливо для підтримки актуальності інформації 

про мета-гру, яка постійно змінюється. 

 

 

Рисунок 2.1 - Схема інтеграції з Riot Games API 

 

Для роботи з типізацією даних використано TypeScript, який забезпечує 

статичну типізацію та покращує процес розробки завдяки ранньому виявленню 

помилок, кращому автодоповненню коду та спрощенню рефакторингу. Це 

особливо важливо при роботі з комплексними структурами даних, такими як 

інформація про чемпіонів, їх здібності, статистику та взаємодії. Завдяки 

TypeScript команда розробників може працювати з кодовою базою більш 

ефективно, швидше виявляти та усувати помилки, а також легше підтримувати 

та розширювати систему. 
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Для реалізації адаптивного дизайну, який забезпечує зручне використання 

системи на різних пристроях, від мобільних телефонів до широкоформатних 

моніторів, використано підхід "mobile-first" та CSS фреймворк Tailwind CSS. Цей 

підхід дозволяє створювати інтерфейс, який автоматично адаптується до розміру 

екрану, забезпечуючи оптимальне відображення контенту на будь-якому 

пристрої. Таким чином, користувачі можуть отримати доступ до аналітичної 

інформації як під час гри на домашньому комп'ютері, так і з мобільного 

пристрою. 

У контексті розгортання додатку обрано статичний хостинг Netlify, який 

забезпечує швидке та надійне обслуговування статичних файлів, інтеграцію з 

системами CI/CD (Continuous Integration/Continuous Deployment) та автоматичне 

розгортання при оновленні репозиторію. Для збереження коду та організації 

процесу розробки використано систему контролю версій Git та платформу 

GitHub, що забезпечує ефективну командну роботу, відстеження змін та 

можливість гнучкого управління процесом розробки через pull-запити та code 

review. 

Для аналітики використання системи інтегровано Google Analytics, що 

дозволяє відстежувати поведінку користувачів, популярність різних функцій та 

продуктивність системи. Ці дані використовуються для подальшої оптимізації 

інтерфейсу та функціоналу відповідно до реальних потреб користувачів [10, 

с.32]. Крім того, для моніторингу помилок впроваджено інтеграцію з Sentry, що 

дозволяє оперативно виявляти та усувати проблеми, які можуть виникати в 

продакшн-середовищі. 

Таким чином, обраний технологічний стек – React, Vite, Riot Games API, 

TypeScript, Tailwind CSS, React Query та інші супутні технології – формує 

потужну та гнучку основу для розробки інформаційно-пошукової системи для 

League of Legends, забезпечуючи високу продуктивність, масштабованість, 

зручність розробки та оптимальний користувацький досвід. Цей стек відповідає 

сучасним тенденціям веб-розробки та дозволяє створити якісний продукт, який 
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задовольнить потреби гравців у аналітичній інформації та рекомендаціях для 

покращення ігрового процесу. 

 

2.2 Проектування архітектури системи: team builder з draft mode, 

порівняльний аналіз чемпіонів (champion comparison), рекомендаційний 

модуль 

 

Проектування архітектури інформаційно-пошукової системи для League of 

Legends вимагає ретельного аналізу функціональних вимог та їх трансформації 

у структуровану та масштабовану систему компонентів. Розроблена архітектура 

базується на принципах модульності, розділення відповідальності та 

ефективного управління потоками даних, що забезпечує гнучкість системи та 

можливість її подальшого розширення. Загальна архітектура системи 

складається з трьох основних функціональних модулів: team builder з draft mode, 

порівняльний аналіз чемпіонів (champion comparison) та рекомендаційний 

модуль. 

 

  

Рисунок 2.2 - Компонентна архітектура системи 
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На вищому рівні архітектури система розділена на клієнтську та серверну 

частини, хоча значна частина логіки реалізована на клієнті для забезпечення 

швидкого відгуку інтерфейсу. Клієнтська частина розроблена з використанням 

React і представляє собою SPA (Single Page Application), що дозволяє 

користувачам взаємодіяти з системою без необхідності перезавантаження 

сторінки [11, с.31-32]. Серверна частина відповідає за взаємодію з API Riot 

Games, кешування даних та виконання ресурсомістких обчислень, таких як 

аналіз статистики матчів та генерація рекомендацій. 

Перший ключовий модуль системи – team builder з draft mode – являє 

собою інтерактивне середовище для моделювання процесу вибору чемпіонів у 

режимі драфту, що використовується в ранкових та турнірних матчах League of 

Legends. Архітектурно цей модуль складається з компонентів відображення пулу 

чемпіонів, інтерфейсу вибору та блокування чемпіонів, панелі відображення 

обраних чемпіонів для обох команд та системи аналізу сформованих композицій. 

Компонент пулу чемпіонів реалізований з використанням віртуалізованого 

списку для ефективного відображення великої кількості чемпіонів та підтримує 

фільтрацію за різними критеріями, такими як роль, тип шкоди, складність та інші 

атрибути. 

Процес драфту реалізований за допомогою кінцевого автомата (finite state 

machine), який контролює послідовність вибору та блокування чемпіонів 

відповідно до правил гри. Це дозволяє системі підтримувати коректні стани 

драфту, включаючи визначення поточної фази (бан або пік), команди, яка має 

зробити вибір, та доступних чемпіонів на кожному етапі. Цей підхід також 

спрощує розширення функціоналу для підтримки різних форматів драфту, таких 

як Blind Pick, Draft Pick або Tournament Draft, що мають різні правила 

послідовності вибору. 

Важливим компонентом модуля team builder є система аналізу композицій, 

яка оцінює сформовані команди за різними критеріями: баланс типів шкоди 

(фізичний, магічний, істинний), наявність контролю натовпу (CC), ініціації бою, 

захисту від пошкоджень та загальної синергії чемпіонів. Архітектурно ця 
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система реалізована як сервіс, що використовує комбінацію заздалегідь 

визначених правил та статистичних даних для оцінки ефективності композиції. 

Результати аналізу відображаються користувачу у вигляді графічних елементів 

(radar chart) та текстових рекомендацій щодо потенційних сильних та слабких 

сторін команди [12, с.155]. 

Для забезпечення реалістичності симуляції драфту, модуль використовує 

дані про частоту використання чемпіонів та популярні комбінації, отримані через 

API Riot Games або зібрані з інших джерел. Це дозволяє системі пропонувати 

релевантні рекомендації щодо вибору чемпіонів на основі поточного мета-гейму 

та вже обраних чемпіонів у драфті. Архітектурно ці рекомендації реалізовані як 

окремий сервіс, що може бути перевикористаний іншими модулями системи. 

Другий ключовий модуль системи – порівняльний аналіз чемпіонів 

(champion comparison) – надає користувачам можливість детального порівняння 

характеристик та ефективності різних чемпіонів. Архітектурно цей модуль 

складається з компонентів вибору чемпіонів для порівняння, системи отримання 

та агрегації даних про обраних чемпіонів, візуалізації порівняльних даних та 

компонента аналізу матчапів (протистояння чемпіонів у грі). 

Центральним елементом цього модуля є сервіс порівняння чемпіонів, який 

відповідає за збір та структурування даних для порівняння, включаючи базові 

статистики (здоров'я, мана, броня, опір до магії, швидкість атаки тощо), 

характеристики здібностей, показники ефективності (win rate, pick rate, ban rate) 

та дані про популярні набори предметів та рун. Цей сервіс використовує 

стратегію кешування для оптимізації продуктивності, зберігаючи часто 

запитувані дані в локальному сховищі та оновлюючи їх при необхідності. 

Для візуалізації порівняльних даних використовується набір 

спеціалізованих компонентів, що адаптуються до типу даних та контексту 

порівняння. Наприклад, для порівняння числових характеристик 

використовуються гістограми або лінійні графіки, для комплексних метрик – 

radar charts, а для часових рядів – line charts. Ці компоненти реалізовані з 
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використанням бібліотеки Recharts, що забезпечує високу гнучкість та 

продуктивність при відображенні даних. 

Особливої уваги заслуговує компонент аналізу матчапів, який надає 

інформацію про ефективність одного чемпіона проти іншого на основі 

статистики ігор. Архітектурно цей компонент використовує окремий сервіс 

отримання даних про матчапи, який агрегує інформацію з API Riot Games та 

інших джерел. Результати аналізу відображаються користувачу у вигляді 

відсоткового співвідношення перемог, рекомендацій щодо тактики гри проти 

конкретного чемпіона та візуалізації ключових моментів протистояння (таких як 

важливі таймінги, критичні рівні та предмети). 

Третій ключовий модуль системи – рекомендаційний – відповідає за 

надання персоналізованих рекомендацій користувачам щодо вибору чемпіонів, 

предметів, рун та тактик гри. Архітектурно цей модуль складається з 

компонентів профілю користувача, системи аналізу преференцій, 

рекомендаційного двигуна та інтерфейсу відображення рекомендацій. 

Компонент профілю користувача відповідає за збір та зберігання інформації про 

вподобання та ігрову історію користувача, включаючи найчастіше 

використовуваних чемпіонів, ролі, статистику перемог та поразок. 
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Рисунок 2.3 - UML діаграма класів рекомендаційного модуля 

 

Структуру та взаємозв'язки компонентів рекомендаційного модуля 

представлено на рис. 2.3 у вигляді UML діаграми класів. Діаграма демонструє 

основні класи, їх атрибути і методи, а також відносини між ними, що 

забезпечують реалізацію стратегічного підходу до генерації персоналізованих 

рекомендацій 

Система аналізу преференцій використовує дані профілю для визначення 

патернів та тенденцій у ігровому стилі користувача. Для цього 

використовуються алгоритми кластеризації та класифікації, що дозволяють 

сегментувати користувачів за різними параметрами та визначати ключові 

характеристики їхнього ігрового процесу. Архітектурно ця система реалізована 

як модуль обробки даних, що взаємодіє з локальним сховищем профілю та 

зовнішніми джерелами даних [13, с.154]. 

Рекомендаційний двигун є ядром модуля та відповідає за генерацію 

персоналізованих рекомендацій на основі аналізу преференцій користувача, 

поточного стану мета-гри та контексту використання (наприклад, контр-пік 

проти конкретного чемпіона або доповнення існуючої команди). Архітектурно 
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двигун використовує гібридний підхід, що поєднує колаборативну фільтрацію 

(на основі схожості користувачів) та контентну фільтрацію (на основі атрибутів 

чемпіонів). Для оптимізації продуктивності рекомендації кешуються та 

оновлюються асинхронно при зміні релевантних даних. 

Інтерфейс відображення рекомендацій адаптується до контексту 

використання та типу рекомендацій. Для загальних рекомендацій щодо вибору 

чемпіонів використовується карусель з карточками чемпіонів, що включають 

базову інформацію та причину рекомендації. Для рекомендацій у контексті 

драфту використовується інтегрований інтерфейс, що відображає рекомендовані 

чемпіони безпосередньо в процесі вибору. Для детальних рекомендацій щодо 

конкретного чемпіона (предмети, руни, порядок прокачки здібностей) 

використовується модальний інтерфейс з вкладками для різних типів 

рекомендацій. 

Для забезпечення ефективної взаємодії між модулями та управління 

станом системи використовується архітектурний патерн Flux (реалізований 

через Redux). Це дозволяє централізувати управління станом додатку та 

забезпечити передбачуваний потік даних між компонентами. Архітектура стану 

включає окремі слайси для даних про чемпіонів, користувацький профіль, стан 

драфту, порівняльний аналіз та рекомендації, що спрощує управління 

комплексним станом системи та забезпечує можливість ізольованого тестування 

кожного аспекту. 

Для оптимізації продуктивності та забезпечення можливості офлайн-

використання, система використовує стратегію прогресивного веб-додатку 

(PWA) з використанням service workers для кешування статичних ресурсів та 

базових даних. Це дозволяє користувачам отримувати доступ до основного 

функціоналу системи навіть при обмеженому підключенні до інтернету, що 

особливо важливо для мобільних користувачів. 

Таким чином, спроектована архітектура системи з трьома основними 

модулями – team builder з draft mode, порівняльний аналіз чемпіонів та 

рекомендаційний модуль – забезпечує гнучку, масштабовану та ефективну 
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основу для реалізації всього необхідного функціоналу інформаційно-пошукової 

системи для League of Legends. Модульний підхід, розділення відповідальності 

та ефективне управління потоками даних дозволяють системі адаптуватися до 

змін ігрової механіки, розширення функціоналу та зростання бази користувачів. 

 

2.3 Методи обробки та візуалізації ігрових даних 

 

Ефективна обробка та візуалізація ігрових даних є основою 

функціональності інформаційно-пошукової системи для League of Legends. 

Розроблені методи обробки даних забезпечують перетворення сирої інформації 

з API Riot Games та інших джерел у структуровані та придатні для аналізу 

формати, а методи візуалізації перетворюють ці дані у наочні та інтуїтивно 

зрозумілі візуальні представлення. Цей розділ описує ключові методи, що 

використовуються в системі для обробки та візуалізації різних типів ігрових 

даних. 

Первинна обробка даних починається з етапу вилучення інформації з API 

Riot Games. Цей процес реалізований через сервіс API-клієнта, який інкапсулює 

логіку запитів до різних ендпоінтів, обробку помилок та управління 

обмеженнями швидкості (rate limits). Для оптимізації кількості запитів 

використовується стратегія агрегації, що дозволяє об'єднувати логічно пов'язані 

запити та мінімізувати навантаження на API. Наприклад, замість окремих запитів 

для отримання інформації про кожного чемпіона, система використовує ендпоінт 

для отримання інформації про всіх чемпіонів з подальшою локальною 

фільтрацією [14, с.42]. 
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Рисунок 2.4 - Алгоритм обробки користувацького запиту 

 

Отримані дані проходять етап нормалізації та трансформації для 

забезпечення консистентності та відповідності вимогам системи. Цей процес 

включає уніфікацію форматів даних, конвертацію значень (наприклад, 

перетворення абсолютних значень у відносні для порівняння), фільтрацію 

неповних або некоректних даних та доповнення даних додатковою інформацією, 

необхідною для аналізу. Для ефективної роботи з даними використовується 

бібліотека Lodash, що надає набір функцій для маніпуляції масивами, об'єктами 

та колекціями даних. 

Важливим методом обробки даних є агрегація та статистичний аналіз 

ігрової інформації. Для розрахунку ключових метрик, таких як win rate, pick rate, 

ban rate та ефективність предметів, використовуються статистичні методи, 

реалізовані в бібліотеці Math.js. Ці метрики розраховуються з урахуванням 

різних контекстів: загальна ефективність, ефективність за рангом гравців, за 

регіоном, за патчем гри. Для забезпечення статистичної значущості результатів 

використовуються методи фільтрації даних з недостатньою вибіркою та довірчі 

інтервали для оцінки точності розрахунків. 

Для аналізу взаємодій між чемпіонами та оцінки ефективності команд 

розроблено метод матричного аналізу. Цей метод використовує матриці 

ефективності, де кожен елемент представляє показник ефективності одного 

чемпіона проти іншого, та матриці синергії, де елементи відображають 

ефективність комбінацій чемпіонів. Для роботи з цими матрицями 

використовуються методи матричної алгебри, що дозволяють ефективно 
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обчислювати агреговані показники ефективності команд та прогнозувати 

результати протистоянь. 

 

 

Рисунок 2.5 - UML діаграма послідовності процесу драфту 

 

Процес взаємодії компонентів системи під час драфту представлено на рис. 

2.5 у вигляді UML діаграми послідовності. Діаграма відображає послідовність 

повідомлень між користувачем та основними програмними модулями під час 

симуляції драфту, включаючи бан та пік чемпіонів, а також аналіз командних 

композицій. 

Кластеризація та класифікація є важливими методами для сегментації 

даних та виявлення патернів. У системі використовується алгоритм k-means для 

кластеризації чемпіонів за їх характеристиками та стилем гри, що дозволяє 

виявляти групи подібних чемпіонів та надавати рекомендації на основі цих груп. 

Класифікація використовується для категоризації чемпіонів за різними 

параметрами, такими як тип шкоди, стиль гри, складність, та для прогнозування 

ефективності різних стратегій гри. 

Для прогнозування результатів матчів та ефективності чемпіонів 

використовуються методи машинного навчання, реалізовані з використанням 

бібліотеки TensorFlow.js. Модель прогнозування обучається на історичних даних 
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про матчі, враховуючи склад команд, статистику гравців, вибір предметів та рун, 

та використовується для оцінки ймовірності перемоги різних комбінацій 

чемпіонів. Це дозволяє надавати користувачам рекомендації щодо оптимального 

вибору чемпіонів та стратегій гри. 

Обробка часових рядів є критично важливим методом для аналізу змін 

ефективності чемпіонів та мета-гри з часом. Для цього використовуються методи 

згладжування, тренд-аналізу та сезонної декомпозиції часових рядів, реалізовані 

з використанням бібліотеки Simple-Statistics. Ці методи дозволяють виявляти 

тренди в ефективності чемпіонів, оцінювати вплив патчів на мета-гру та 

прогнозувати майбутні зміни популярності та ефективності чемпіонів [15, с.4-5]. 

Для ефективного зберігання та кешування оброблених даних 

використовується структура даних на основі індексованих колекцій, що 

забезпечує швидкий доступ до інформації за різними параметрами (ім'я 

чемпіона, роль, тип шкоди тощо). Ця структура реалізована з використанням 

бібліотеки Immutable.js, що забезпечує незмінні (immutable) колекції даних та 

ефективні операції над ними. Для управління кешем використовується 

бібліотека React Query, що забезпечує автоматичне оновлення даних та 

інвалідацію кешу при змінах. 

Переходячи до методів візуалізації, система використовує різноманітні 

типи графічних представлень для ефективного відображення різних аспектів 

ігрових даних. Для візуалізації числових характеристик чемпіонів 

використовуються стовпчикові діаграми (bar charts), що дозволяють наочно 

порівнювати значення атрибутів різних чемпіонів. Ці діаграми реалізовані з 

використанням бібліотеки Recharts та підтримують інтерактивність, такі як 

підсвічування, сортування та фільтрація. 

Для візуалізації комплексних метрик чемпіонів використовуються радарні 

діаграми (radar charts або spider charts), які дозволяють одночасно відображати 

багатовимірні дані, такі як сила атаки, захист, контроль натовпу, мобільність та 

складність чемпіона. Ця форма візуалізації дає можливість користувачам швидко 

оцінити загальний профіль чемпіона та порівняти сильні та слабкі сторони різних 
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чемпіонів. Реалізація радарних діаграм включає динамічну адаптацію осей 

відповідно до даних, що відображаються, та інтерактивні підказки для 

детального відображення значень. 

Для аналізу співвідношень та розподілу використовуються кругові 

діаграми (pie charts) та теплові карти (heatmaps). Кругові діаграми 

використовуються для візуалізації розподілу чемпіонів за ролями, типами шкоди 

чи іншими категоріями, а теплові карти застосовуються для відображення 

ефективності чемпіонів проти інших чемпіонів або в різних фазах гри. Теплові 

карти особливо ефективні для візуалізації матриць взаємодій між чемпіонами, де 

колір комірки відображає ефективність одного чемпіона проти іншого. 

Для відображення змін у часі використовуються лінійні графіки (line 

charts), які візуалізують тренди в популярності та ефективності чемпіонів з 

часом, наприклад, зміни win rate чи pick rate після випуску патчів. Ці графіки 

підтримують інтерактивність, включаючи масштабування, виділення 

конкретних періодів та порівняння декількох чемпіонів на одному графіку. Для 

контекстуалізації змін на графіках відображаються вертикальні маркери, що 

позначають дати випуску патчів або інших значних подій в грі. 

Для візуалізації позиціонування та переміщення на ігровій карті 

використовуються просторові графіки та теплові карти руху. Ці візуалізації 

відображають типові маршрути переміщення чемпіонів, зони контролю та місця 

найчастіших взаємодій між гравцями. Такі представлення особливо корисні для 

аналізу загальної стратегії гри та оптимізації ранніх фаз гри (early game strategy). 

Для інтерактивного порівняння чемпіонів розроблено спеціалізований 

інтерфейс порівняльних таблиць, що дозволяє користувачам вибирати чемпіонів 

для порівняння та параметри, за якими здійснюється порівняння. Ці таблиці 

використовують кольорове кодування для швидкого визуального виявлення 

переваг та недоліків кожного чемпіона та підтримують сортування за різними 

параметрами. Для забезпечення інформативності таблиці включають як 

абсолютні значення характеристик, так і відносні показники, що спрощує 

порівняння. 
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Для візуалізації рекомендацій щодо вибору предметів та рун 

використовуються деревовидні діаграми (tree diagrams) та потокові графіки (flow 

charts). Ці візуалізації відображають популярні послідовності придбання 

предметів, взаємозв'язки між рунами та їх ефективність для різних чемпіонів та 

ситуацій. Інтерактивність цих діаграм дозволяє користувачам досліджувати різні 

варіанти та розуміти логіку за рекомендаціями. 

Особлива увага приділяється адаптивній візуалізації, яка забезпечує 

оптимальне відображення даних на різних пристроях та розмірах екрану. Це 

досягається через використання респонсивних компонентів та динамічного 

масштабування візуалізацій відповідно до доступного простору. Крім того, 

система підтримує різні режими відображення, такі як компактний режим для 

мобільних пристроїв та розширений режим для десктопних браузерів [16, с.9]. 

Для підвищення доступності візуалізацій для користувачів з порушеннями 

зору використовуються контрастні кольорові схеми та альтернативні 

представлення даних. Наприклад, крім кольорового кодування, для 

відображення значень використовуються також розміри, форми та текстові 

описи. Крім того, система підтримує налаштування контрастності та розміру 

елементів інтерфейсу відповідно до потреб користувача. 

Інтеграція інтерактивних елементів є ключовим аспектом візуалізації 

ігрових даних. Користувачі можуть взаємодіяти з візуалізаціями через наведення 

курсора, клацання, перетягування та інші дії, що дозволяє їм досліджувати дані 

та отримувати додаткову інформацію. Наприклад, при наведенні на елемент 

графіка з'являється спливаюча підказка з детальною інформацією, а клацання на 

чемпіона в таблиці порівняння відкриває повний профіль чемпіона. 

Для забезпечення оптимальної продуктивності при відображенні великих 

обсягів даних використовуються техніки оптимізації рендерингу, такі як 

віртуалізація списків, відкладене завантаження даних (lazy loading) та 

прогресивна деталізація. Ці методи забезпечують швидкий відгук інтерфейсу 

навіть при роботі з сотнями чемпіонів та тисячами матчів, що особливо важливо 

для користувачів з менш потужними пристроями. 
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Таким чином, розроблені методи обробки та візуалізації ігрових даних 

забезпечують ефективне перетворення складної інформації про League of 

Legends у зрозумілі та інтуїтивні візуальні представлення, що дозволяють 

користувачам швидко аналізувати різні аспекти гри та приймати обґрунтовані 

рішення щодо вибору чемпіонів, предметів, рун та стратегій. Комбінація різних 

типів візуалізацій, інтерактивність та адаптивність забезпечують оптимальний 

користувацький досвід на різних пристроях та для різних сценаріїв використання 

системи. 
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РОЗДІЛ 3. ПРАКТИЧНА РЕАЛІЗАЦІЯ ТА АНАЛІЗ РОБОТИ СИСТЕМИ 

 

3.1 Реалізація функціоналу team builder з draft mode та порівнянням 

чемпіонів (champion matchup analysis) 

 

Реалізація функціоналу team builder з draft mode в інформаційно-пошуковій 

системі для League of Legends представляє собою комплексний процес розробки 

інтерактивного середовища для моделювання процесу вибору чемпіонів. Draft 

mode або режим драфту є ключовою механікою League of Legends, що дозволяє 

командам почергово обирати та блокувати чемпіонів перед початком матчу. Цей 

режим відрізняється від звичайного blind pick тим, що гравці мають можливість 

бачити вибір противників та стратегічно реагувати на них, блокуючи небажаних 

чемпіонів або обираючи контр-піки. 

Архітектурна основа team builder модуля побудована на принципах 

компонентної архітектури React, що забезпечує модульність та 

перевикористання коду. Головний компонент DraftContainer відповідає за 

координацію всіх підсистем драфту, включаючи управління станом вибраних та 

заблокованих чемпіонів, контроль фаз драфту та взаємодію між різними 

інтерфейсними елементами. Цей контейнер використовує React Context API для 

передачі стану між дочірніми компонентами, що дозволяє уникнути prop drilling 

та забезпечує ефективне управління складним станом драфту. 

Стан драфту управляється за допомогою кінцевого автомата (finite state 

machine), реалізованого через useReducer хук React. State machine визначає 

можливі стани драфту, такі як BAN_PHASE_1, PICK_PHASE_1, 

BAN_PHASE_2, PICK_PHASE_2 та FINAL_PHASE, а також переходи між цими 

станами. Кожен стан характеризується конкретними правилами: яка команда має 

право на дію, чи це фаза блокування або вибору чемпіона, та скільки часу 

відведено на прийняття рішення [17, с.53]. Використання state machine 

забезпечує передбачуваність поведінки системи та спрощує додавання нових 

типів драфтів у майбутньому. 



35 
 

Інтерфейс драфту складається з декількох ключових компонентів, кожен з 

яких відповідає за специфічний аспект взаємодії. ChampionPool компонент 

відображає доступних для вибору чемпіонів у вигляді сітки з можливістю 

фільтрації та пошуку. Цей компонент використовує віртуалізацію для 

ефективного рендерингу великої кількості елементів, що критично важливо при 

відображенні понад 160 чемпіонів одночасно. Фільтрація реалізована через 

декілька критеріїв: роль чемпіона, тип шкоди, рівень складності та назва, що 

дозволяє користувачам швидко знаходити потрібних чемпіонів. 

TeamComposition компонент відображає поточний склад команд з обох 

сторін драфту, візуально розділяючи "Blue Side" та "Red Side" відповідно до 

термінології League of Legends. Кожна позиція в команді (Top, Jungle, Mid, ADC, 

Support) має власний слот, що може бути порожнім, містити обраного чемпіона 

або показувати заблокованого чемпіона. Візуальне оформлення команд включає 

кольорове кодування для швидкого розрізнення сторін та анімовані переходи 

при зміні стану слотів. 

Система управління драфтом включає реалізацію таймерів для кожної 

фази вибору, що імітує реальні умови ранкових та турнірних ігор. Timer 

компонент використовує useEffect з setInterval для відліку часу та автоматично 

переходить до наступної фази при закінченні відведеного часу. Час для різних 

фаз налаштовується через конфігураційний об'єкт: зазвичай 30 секунд для бану 

чемпіонів та 30 секунд для вибору, що відповідає стандартним налаштуванням 

гри. 

Логіка валідації вибору чемпіонів забезпечує коректність драфту 

відповідно до правил League of Legends. Validation сервіс перевіряє, чи не був 

чемпіон уже обраний або заблокований, чи відповідає вибір поточній фазі 

драфту та чи має поточна команда право на дію. При спробі некоректного вибору 

система відображає відповідні повідомлення про помилки та блокує 

неприпустимі дії, зберігаючи цілісність ігрового процесу. 

Інтеграція з Riot Games API забезпечує актуальність даних про чемпіонів, 

включаючи їх доступність у поточному патчі гри. API клієнт виконує запити до 
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ендпоінту /lol/platform/v3/champion-rotations для отримання інформації про 

ротацію безкоштовних чемпіонів та до /lol/static-data/v4/champions для 

отримання повної інформації про всіх чемпіонів. Дані кешуються в localStorage 

з перевіркою актуальності на основі версії патчу. 

Аналіз команд реалізовано через TeamAnalyzer компонент, який оцінює 

збалансованість обраних композицій за різними критеріями. Система аналізує 

розподіл типів шкоди (фізичний, магічний, істинний), наявність контролю 

натовпу, танків та підтримки, а також загальну синергію між чемпіонами. 

Результати аналізу відображаються у вигляді інтерактивних графіків та 

текстових рекомендацій щодо покращення композиції команди. 

Реалізація порівняння чемпіонів (champion matchup analysis) є другим 

ключовим аспектом функціоналу. Champion comparison модуль дозволяє 

користувачам порівнювати характеристики різних чемпіонів для прийняття 

обґрунтованих рішень щодо вибору. Цей модуль складається з компонента 

ChampionSelector для вибору чемпіонів для порівняння та ComparisonView для 

відображення результатів аналізу. 

ChampionSelector використовує автокомпліт інтерфейс з пошуком у 

реальному часі, що дозволяє користувачам швидко знаходити потрібних 

чемпіонів серед великої бази даних. Пошук реалізований через debounced 

функцію, що запобігає надмірним перерендерам при швидкому наборі тексту. 

Компонент підтримує вибір до чотирьох чемпіонів одночасно для комплексного 

порівняння, з можливістю швидкого видалення обраних чемпіонів (рис.3.1-3.2). 
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Рисунок 3.1 - Перелік персонажів із можливістю фільтрації та пошуку у веб-

додатку 

 

 

Рисунок 3.2 – Інтерфейс підбору та блокування чемпіонів із фільтрацією та 

пошуком у веб-додатку 

 

Система збору даних для порівняння агрегує інформацію з різних джерел 

API, включаючи базові характеристики чемпіонів, статистику їх здібностей, 

показники ефективності та мета-дані. ChampionDataAggregator сервіс відповідає 

за консолідацію цих даних у структуровані об'єкти, придатні для візуалізації та 
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аналізу. Процес агрегації включає нормалізацію значень для коректного 

порівняння та розрахунок похідних метрик. 

Візуалізація порівняльних даних реалізована через набір спеціалізованих 

компонентів з використанням бібліотеки Recharts. StatComparison компонент 

відображає базові характеристики чемпіонів у вигляді горизонтальних барів з 

кольоровим кодуванням для швидкого визначення переваг кожного чемпіона. 

AbilityComparison компонент використовує радарні діаграми для відображення 

силових характеристик здібностей чемпіонів у багатовимірному просторі 

(рис.3.3). 

 

 

Рисунок 3.3 - Інтерфейс існуючих рун  

 

Аналіз матчапів включає розрахунок статистичних показників 

ефективності одного чемпіона проти іншого на основі історичних даних матчів. 

MatchupAnalyzer обробляє дані про результати ігор між конкретними парами 

чемпіонів, розраховуючи win rate, average game duration та key performance 

indicators для кожного протистояння. Ці розрахунки враховують різні фактори, 

такі як ранг гравців, тривалість матчу та вибір предметів. 

Система рекомендацій для контр-піків аналізує дані матчапів та пропонує 

чемпіонів, які мають статистичну перевагу проти обраного противника. 
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CounterRecommendation компонент використовує алгоритми машинного 

навчання для ранжування чемпіонів за ефективністю проти конкретної цілі, 

враховуючи не лише прямі протистояння, але й роль чемпіона в команді та 

поточну мета-гру. 

Інтерактивність інтерфейсу забезпечується через систему подій та 

колбеків, що дозволяють користувачам натискати на чемпіонів для їх вибору, 

використовувати drag-and-drop для переміщення чемпіонів між слотами команди 

та отримувати миттєвий зворотний зв'язок у вигляді tooltips та modal вікон з 

детальною інформацією. Hover ефекти та анімації перетворень надають системі 

сучасний та відгукливий feel. 

Система управління станом використовує Redux Toolkit для 

централізованого зберігання стану драфту, обраних чемпіонів для порівняння та 

результатів аналізу. Draft slice управляє станом поточного драфту, включаючи 

обраних та заблокованих чемпіонів, поточну фазу та налаштування часу. 

Comparison slice зберігає дані про обраних для порівняння чемпіонів та кешовані 

результати аналізів для оптимізації продуктивності [18, с.6-7]. 

Оптимізація продуктивності включає використання React.memo для 

запобігання непотрібним перерендерам компонентів, useMemo для кешування 

дорогих обчислень та useCallback для стабілізації функцій обробників подій. 

Віртуалізація списків чемпіонів за допомогою react-window забезпечує плавне 

прокручування навіть при роботі з великими наборами даних. 

Тестування функціоналу включає unit тести для окремих компонентів з 

використанням Jest та React Testing Library, integration тести для перевірки 

взаємодії між компонентами та end-to-end тести для валідації повних сценаріїв 

використання. Тести покривають як позитивні сценарії правильного 

використання, так і edge cases та обробку помилок. 

Адаптивність інтерфейсу забезпечується через responsive дизайн з 

використанням CSS Grid та Flexbox, що дозволяє оптимально відображати 

складний інтерфейс драфту на різних розмірах екранів. Mobile-first підхід 
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гарантує коректне відображення на мобільних пристроях з адаптацією сітки 

чемпіонів та спрощенням інтерфейсу управління для тач-взаємодії. 

Система логування та аналітики інтегрована для відстеження 

використання різних функцій, популярних комбінацій чемпіонів та типових 

помилок користувачів. Ці дані використовуються для подальшого покращення 

користувацького досвіду та оптимізації алгоритмів рекомендацій на основі 

реальної поведінки користувачів системи. 

 

3.2 Розробка рекомендаційної системи на основі класів (roles), складності 

(difficulty) та типу шкоди (damage type) 

 

Розробка рекомендаційної системи для League of Legends базується на 

комплексному аналізі трьох ключових характеристик чемпіонів: їх ролей у 

команді, рівня складності управління та типу шкоди, який вони завдають. 

Рекомендаційна система представляє собою інтелектуальний модуль, що 

використовує алгоритми машинного навчання та статистичний аналіз для 

надання персоналізованих пропозицій щодо вибору чемпіонів відповідно до 

індивідуальних преференцій та навичок користувача. Така система є критично 

важливою для покращення ігрового досвіду, особливо для новачків, які 

потребують керівництва у виборі підходящих чемпіонів для освоєння базових 

механік гри. 

Класифікація ролей чемпіонів у League of Legends включає п'ять основних 

категорій: Top Lane (верхня лінія), Jungle (ліс), Mid Lane (середня лінія), Bot Lane 

ADC (нижня лінія - стрілець) та Support (підтримка). Кожна роль 

характеризується унікальною відповідальністю та стилем гри, що вимагає різних 

навичок та підходів. Система ролей реалізована через enum структуру 

ChampionRole у TypeScript, що забезпечує типову безпеку та запобігає помилкам 

при роботі з даними ролей. Рекомендаційна система аналізує статистику 

ефективності чемпіонів у конкретних ролях, враховуючи їх win rate, pick rate та 

ban rate у різних рангових лігах. 
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Складність чемпіонів визначається за шкалою від 1 до 10, де 1 означає 

найпростіших чемпіонів для освоєння, а 10 - найскладніших. Цей параметр 

впливає на рекомендації залежно від досвіду користувача у грі. DifficultyLevel 

enum містить категорії: BEGINNER (1-3), INTERMEDIATE (4-6), ADVANCED 

(7-8) та EXPERT (9-10). Система враховує не лише офіційний рейтинг складності 

від Riot Games, але й аналізує статистику гравців різного рівня для більш точного 

визначення реальної складності освоєння чемпіона у практичній грі [19, с.37-39]. 

Тип шкоди характеризує основний спосіб завдання пошкоджень 

чемпіоном та включає три категорії: фізична шкода (Attack Damage), магічна 

шкода (Ability Power) та змішана шкода (Mixed). DamageType enum забезпечує 

структуровану класифікацію цього параметру. Рекомендаційна система 

використовує аналіз типу шкоди для забезпечення збалансованості командних 

композицій, пропонуючи чемпіонів, які доповнюють існуючий склад команди за 

типом шкоди та не дозволяють противнику легко контрувати команду через 

придбання захисних предметів одного типу. 

Архітектура рекомендаційної системи побудована на модульному 

принципі з використанням сервіс-орієнтованого підходу. Основний 

RecommendationEngine сервіс координує роботу спеціалізованих підсистем: 

RoleAnalyzer для аналізу ролевих преференцій, DifficultyMatcher для підбору 

чемпіонів відповідної складності та DamageTypeBalancer для забезпечення 

збалансованості типів шкоди. Кожен сервіс інкапсулює специфічну логіку та 

може бути незалежно тестований та оновлений [20, с.16-17]. 

Алгоритм колаборативної фільтрації реалізований для аналізу поведінки 

схожих користувачів та надання рекомендацій на основі їх преференцій. 

CollaborativeFilter клас використовує матрицю користувач-чемпіон для 

обчислення схожості між користувачами за допомогою косинусної відстані. 

Алгоритм ідентифікує користувачів з подібними патернами вибору чемпіонів та 

рекомендує чемпіонів, які були успішними для схожих гравців. Цей підхід 

особливо ефективний для досвідчених гравців, які мають достатню історію ігор 

для аналізу. 
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Контентна фільтрація базується на аналізі характеристик самих чемпіонів 

та їх відповідності профілю користувача. ContentBasedFilter аналізує атрибути 

чемпіонів, такі як роль, складність, тип шкоди, стиль гри та статистичні 

характеристики, порівнюючи їх з преференціями користувача. Цей підхід 

ефективний для нових користувачів, які ще не мають достатньої історії для 

колаборативної фільтрації, та дозволяє пояснити причини рекомендацій через 

аналіз конкретних характеристик. 

Гібридний підхід поєднує переваги колаборативної та контентної 

фільтрації через HybridRecommender клас, який використовує зважене 

комбінування результатів обох методів. Вага кожного методу динамічно 

адаптується залежно від кількості доступних даних про користувача: для нових 

користувачів більша вага надається контентній фільтрації, тоді як для 

досвідчених користувачів домінує колаборативна фільтрація [21, с.16-25]. Цей 

підхід забезпечує оптимальну якість рекомендацій на всіх етапах 

користувацького досвіду. 

 

 

Рисунок 3.4 - Архітектура рекомендаційної системи 

 

Система профілювання користувачів збирає та аналізує дані про ігрові 

преференції через UserProfileBuilder сервіс. Цей сервіс відстежує частоту вибору 

чемпіонів різних ролей, успішність з чемпіонами різної складності та 

преференції щодо типу шкоди. Профіль користувача включає також мета-

характеристики, такі як схильність до агресивної або захисної гри, преференція 
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щодо ранньої або пізньої гри, та здатність до командної роботи на основі вибірки 

чемпіонів. 

Алгоритм матричної факторизації реалізований для виявлення латентних 

факторів у даних про користувачів та чемпіонів. MatrixFactorization клас 

використовує сингулярне розкладання (SVD) для зменшення розмірності даних 

та ідентифікації прихованих патернів у поведінці користувачів. Цей метод 

дозволяє виявляти неочевидні зв'язки між характеристиками чемпіонів та 

преференціями користувачів, покращуючи якість рекомендацій через глибше 

розуміння ігрових патернів [22, с.86-93]. 

Система аналізу мета-гри інтегрована для врахування поточного стану 

збалансованості гри при наданні рекомендацій. MetaAnalyzer відстежує зміни 

популярності та ефективності чемпіонів після випуску патчів, коригуючи 

рекомендації відповідно до актуального стану гри. Система використовує ковзне 

вікно для аналізу трендів та фільтрує застарілі дані, які можуть не відображати 

поточні реалії гри після суттєвих змін балансу. 

Контекстуальні рекомендації враховують ситуаційні фактори, такі як 

поточний склад команди у драфті, обрані чемпіони противника та специфіка 

карти. ContextualRecommender аналізує синергію між чемпіонами, ефективність 

проти конкретних противників та відповідність стратегічним цілям команди. 

Цей модуль особливо важливий для турнірного режиму, де стратегічні 

міркування превалюють над індивідуальними преференціями. 

Алгоритм кластеризації K-means застосовується для сегментації 

користувачів за їх ігровим стилем через UserClustering сервіс. Система 

ідентифікує групи користувачів з подібними характеристиками та надає 

рекомендації на основі успішних патернів кожного кластеру. Кластеризація 

враховує не лише статистичні показники, але й поведінкові паттерни, такі як 

частота гри у різний час доби, тривалість ігрових сесій та схильність до 

експериментування з новими чемпіонами. 

Система машинного навчання з підкріпленням реалізована через 

ReinforcementLearner для динамічного покращення якості рекомендацій на 
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основі зворотного зв'язку користувачів. Система відстежує, наскільки часто 

користувачі обирають рекомендованих чемпіонів та їх подальшу успішність з 

цими чемпіонами, використовуючи ці дані для корегування алгоритмів. Q-

learning алгоритм застосовується для оптимізації стратегій рекомендацій у 

довгостроковій перспективі. 

Інтерфейс рекомендаційної системи реалізований через набір React 

компонентів, що забезпечують інтуїтивну взаємодію з системою. 

RecommendationDisplay компонент відображає рекомендовані чемпіони у 

вигляді карток з візуальними індикаторами причин рекомендації, рівня 

впевненості системи та очікуваної ефективності. Компонент підтримує різні 

режими відображення: компактний для швидкого огляду та детальний для 

глибокого аналізу кожної рекомендації (рис.3.5). 

 

 

Рисунок 3.5 - Інтерфейс відображення можливих ігрових предметів (items) 

 

Система фільтрації рекомендацій дозволяє користувачам налаштовувати 

параметри відповідно до їх поточних потреб. RecommendationFilter надає 

можливості фільтрації за роллю, складністю, типом шкоди та додатковими 

критеріями, такими як мобільність чемпіона, наявність контролю натовпу або 

здатність до initiative. Фільтри є інтерактивними та забезпечують миттєве 

оновлення списку рекомендацій без перезавантаження сторінки. 
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Алгоритм диверсифікації рекомендацій забезпечує різноманітність 

пропозицій через DiversificationEngine, який запобігає надто вузькому фокусу на 

схожих чемпіонах. Система балансує релевантність рекомендацій з їх 

різноманітністю, пропонуючи комбінацію безпечних варіантів, що відповідають 

установленим преференціям, та експериментальних чемпіонів, які можуть 

розширити ігровий досвід користувача. 

Система пояснень рекомендацій реалізована через ExplanationGenerator, 

який надає зрозумілі обґрунтування кожної рекомендації. Пояснення включають 

аналіз відповідності чемпіона профілю користувача, статистичні показники 

ефективності, порівняння з альтернативами та конкретні поради щодо 

ефективного використання рекомендованого чемпіона. Цей підхід підвищує 

довіру користувачів до системи та має освітню цінність. 

Оптимізація продуктивності рекомендаційної системи включає кешування 

обчислених рекомендацій, асинхронну обробку великих наборів даних та 

інкрементальне навчання моделей. RecommendationCache зберігає результати 

обчислень для часто запитуваних комбінацій параметрів, суттєво зменшуючи час 

відгуку системи. Система використовує Web Workers для parallel processing 

комплексних обчислень без блокування основного потоку інтерфейсу. 

Процес валідації та тестування рекомендаційної системи включає cross-

validation для оцінки точності алгоритмів, A/B тестування для порівняння різних 

підходів та метрики якості рекомендацій, такі як precision, recall та NDCG 

(Normalized Discounted Cumulative Gain). Система автоматично відстежує 

ефективність рекомендацій та генерує звіти для подальшого покращення 

алгоритмів. 

Інтеграція з аналітичною системою дозволяє відстежувати вплив 

рекомендацій на користувацький досвід через AnalyticsIntegration модуль. 

Система збирає дані про click-through rate рекомендацій, conversion rate 

(наскільки часто користувачі грають рекомендованими чемпіонами) та 

satisfaction rate на основі послідуючих оцінок користувачів. Ці метрики 

використовуються для постійного покращення якості рекомендаційної системи. 
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Адаптивність системи до різних типів користувачів забезпечується через 

PersonalizationEngine, який динамічно коригує параметри рекомендацій залежно 

від рівня досвіду користувача, частоти гри та схильності до експериментування. 

Система розпізнає різні архетипи гравців: new players (фокус на простих 

чемпіонах), experimenters (різноманітні рекомендації), competitors (мета-

орієнтовані пропозиції) та specialists (поглиблення в конкретних ролях або 

стилях гри) [23, с.47-52]. 

Система також включає функціональність для групових рекомендацій 

через TeamRecommender, який аналізує склад команди та пропонує чемпіонів, 

що оптимально доповнюють існуючий lineup. Цей модуль враховує синергію між 

чемпіонами, збалансованість типів шкоди, наявність необхідних ролей та 

загальну стратегічну когерентність команди, забезпечуючи рекомендації не 

лише на індивідуальному, але й на командному рівні. 

 

3.3 Тестування користувацького інтерфейсу (UI testing) та аналіз 

ефективності системи 

 

Тестування користувацького інтерфейсу інформаційно-пошукової системи 

для League of Legends представляє собою комплексний процес валідації 

функціональності, usability та performance всіх інтерфейсних компонентів 

системи. UI testing включає автоматизоване тестування компонентів, 

інтеграційне тестування взаємодій між модулями та end-to-end тестування 

повних користувацьких сценаріїв. Ефективне тестування інтерфейсу критично 

важливе для забезпечення стабільної роботи системи в умовах різноманітних 

користувацьких взаємодій та гарантування позитивного користувацького 

досвіду незалежно від технічної кваліфікації користувачів [24, с.680-684]. 

Архітектура тестової системи побудована на основі Jest testing framework 

у поєднанні з React Testing Library, що забезпечує ефективне тестування React 

компонентів з фокусом на поведінці, а не на деталях реалізації. Testing utilities 

включають custom render функції з провайдерами для Redux store та React Router, 
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helper функції для симуляції користувацьких дій та mock об'єкти для зовнішніх 

залежностей, таких як API клієнти та localStorage. Налаштування test environment 

включає конфігурацію jsdom для емуляції браузерного середовища та setup 

файли для ініціалізації глобальних mocks та утиліт. 

Unit тестування компонентів охоплює всі ключові елементи інтерфейсу з 

валідацією їх окремої функціональності. Тести для ChampionCard компонента 

перевіряють правильність відображення інформації про чемпіона, реакцію на 

користувацькі взаємодії та коректне застосування CSS класів для різних станів 

компонента. SearchBar компонент тестується на здатність фільтрувати 

результати в реальному часі, обробляти edge cases з порожніми запитами та 

коректно відображати стани завантаження та помилок. Кожен тест фокусується 

на одному аспекті функціональності та використовує descriptive назви для 

швидкого розуміння призначення. 

Тестування взаємодії користувача реалізовано через симуляцію 

різноманітних користувацьких дій за допомогою userEvent API з Testing Library. 

Тести валідують click events на чемпіонах для їх вибору у драфті, keyboard 

navigation для доступності, drag and drop операції для переміщення чемпіонів між 

слотами команди та форми введення для пошуку та фільтрації. Кожна взаємодія 

тестується як в ізольованому стані, так і в контексті повних користувацьких 

сценаріїв для забезпечення коректної поведінки системи [25, с.165-166]. 

Інтеграційне тестування фокусується на перевірці взаємодії між різними 

компонентами та модулями системи. Тести для draft mode валідують коректну 

передачу стану між TeamBuilder та ChampionPool компонентами, правильність 

оновлення UI при зміні фази драфту та синхронізацію таймерів з інтерфейсними 

елементами. Integration tests для recommendation system перевіряють взаємодію 

між фільтрами, recommendation engine та відображенням результатів, 

забезпечуючи цілісність data flow через всю систему. 

End-to-end тестування реалізовано за допомогою Cypress framework для 

валідації повних користувацьких сценаріїв у реальному браузерному 

середовищі. E2E тести покривають сценарії повного драфту від початку до 
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завершення, включаючи бан та пік фази, аналіз команд та генерацію 

рекомендацій. Тести champion comparison валідують процес вибору множинних 

чемпіонів, відображення порівняльних даних та інтерактивність графічних 

елементів. Кожен E2E тест включає assertions для критичних елементів 

інтерфейсу та валідацію правильності відображуваних даних. 

Performance тестування інтерфейсу включає аналіз часу завантаження 

компонентів, responsiveness користувацьких взаємодій та ефективності 

рендерингу великих списків даних. Використання React DevTools Profiler 

забезпечує детальний аналіз performance метрик, включаючи час рендерингу 

компонентів, кількість re-renders та ідентифікацію performance bottlenecks. 

Benchmark тести вимірюють час відгуку системи на типові користувацькі дії, такі 

як фільтрація чемпіонів, оновлення рекомендацій та перехід між різними 

розділами додатку. 

Accessibility тестування забезпечує відповідність системи стандартам 

WCAG 2.1 та включає валідацію keyboard navigation, screen reader compatibility 

та color contrast ratios. Automated accessibility testing реалізований за допомогою 

axe-core library, що інтегрована у unit та integration тести для автоматичного 

виявлення accessibility issues. Manual accessibility testing включає перевірку 

роботи системи з різними assistive technologies та валідацію user experience для 

користувачів з обмеженими можливостями. 

Responsive design тестування валідує коректне відображення інтерфейсу на 

різних розмірах екранів та пристроях. Тести включають перевірку grid layouts 

для champion selection, адаптивності navigation menu та оптимізації touch 

interactions для мобільних пристроїв. Використання cypress-real-events плагіну 

забезпечує реалістичну симуляцію touch gestures та multi-touch interactions для 

валідації mobile user experience. 

Cross-browser тестування гарантує сумісність системи з різними 

браузерами та їх версіями. Test suite включає валідацію функціональності у 

Chrome, Firefox, Safari та Edge, з особливою увагою до CSS compatibility, 

JavaScript API availability та performance характеристик кожного браузера. 
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Automated cross-browser testing реалізований через BrowserStack інтеграцію для 

забезпечення широкого покриття браузерних конфігурацій. 

Visual regression testing забезпечує виявлення непередбачених змін у 

візуальному оформленні компонентів. Використання Percy або схожих 

інструментів дозволяє автоматично порівнювати screenshots компонентів з 

reference images та ідентифікувати візуальні відмінності. Тести покривають різні 

стани компонентів, включаючи loading states, error states та interactive states для 

повного покриття візуальних аспектів системи. 

Аналіз ефективності системи включає комплексну оцінку продуктивності 

як клієнтської, так і серверної частин додатку. Client-side performance аналіз 

фокусується на metrics таких як First Contentful Paint (FCP), Largest Contentful 

Paint (LCP), Cumulative Layout Shift (CLS) та First Input Delay (FID). 

Використання Lighthouse automated auditing забезпечує регулярний моніторинг 

Core Web Vitals та надання рекомендацій для покращення performance [26, с.16-

21]. 

Memory usage профілювання виявляє potential memory leaks та оптимізує 

споживання пам'яті додатком. Browser DevTools memory profiler 

використовується для аналізу heap snapshots, ідентифікації retained objects та 

оптимізації garbage collection patterns. Особлива увага приділяється memory 

management у React компонентах через правильне cleanup useEffect hooks та 

оптимізацію event listeners lifecycle. 

Network performance аналіз включає оцінку ефективності API запитів, 

bundle size optimization та caching strategies. Використання webpack-bundle-

analyzer забезпечує візуалізацію розміру JavaScript bundles та ідентифікацію 

можливостей для code splitting та lazy loading. Network throttling тести валідують 

performance системи в умовах повільного інтернет з'єднання та high latency 

environments. 

Database performance metrics включають аналіз швидкості запитів до API, 

ефективності caching mechanisms та optimization database queries. Моніторинг 

response times для різних API endpoints забезпечує раннє виявлення performance 
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degradation та можливості для optimization. Load testing з використанням tools як 

JMeter валідує здатність системи обслуговувати multiple concurrent users без 

суттєвого погіршення performance. 

Real User Monitoring (RUM) забезпечує збір performance metrics від 

реальних користувачів системи. Інтеграція з Google Analytics та custom 

performance tracking дозволяє аналізувати user journey performance, 

ідентифікувати повільні user flows та оптимізувати critical user paths. Heatmap 

analysis за допомогою tools як Hotjar надає insights щодо user interaction patterns 

та potential usability improvements. 

Error tracking та logging система забезпечує comprehensive моніторинг 

помилок та exceptions у production environment. Sentry інтеграція автоматично 

збирає JavaScript errors, performance issues та user feedback, надаючи detailed stack 

traces та user context для швидкого debugging. Error rate metrics та error trend 

analysis допомагають ідентифікувати systemic issues та track effectiveness bug 

fixes. 

User experience metrics включають аналіз user engagement, task completion 

rates та user satisfaction scores. A/B testing framework дозволяє порівнювати різні 

variants інтерфейсних рішень та вимірювати їх impact на key performance 

indicators. Conversion funnel analysis виявляє points user drop-off та можливості 

для UX optimization across different user journeys. 

Automated testing pipeline інтегрована у CI/CD процес для забезпечення 

continuous quality assurance. GitHub Actions workflow автоматично запускає full 

test suite при кожному pull request, включаючи unit tests, integration tests, 

accessibility tests та performance audits. Test coverage reporting забезпечує visibility 

щодо testing completeness та ідентифікує areas requiring additional test coverage. 
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Рисунок 3.6 - Комплексна схема тестування та аналізу ефективності системи 

 

Таблиця 3.1 - Результати комплексного тестування системи 

Тип тестування Інструмент Покриття 

(%) 

Кількість 

тестів 

Час 

виконання 

Статус 

Unit Tests Jest + RTL 87% 156 12.3с      

Пройдено 

Integration Tests Jest 73% 42 8.7с      

Пройдено 

E2E Tests Cypress 95% 28 127с      

Пройдено 

Performance Tests Lighthouse 100% 15 45с      

Відмінно 

Accessibility Tests axe-core 98% 23 6.2с      

Пройдено 

Security Tests OWASP ZAP 100% 18 89с      

Безпечно 
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Таблиця 3.2 - Метрики продуктивності та користувацького досвіду 

Метрика Ціль Desktop Mobile Оцінка 

First Contentful Paint 

(FCP) 

< 2.0с 1.2с 1.8с Відмінно 

Largest Contentful Paint 

(LCP) 

< 3.0с 2.1с 2.7с Добре 

Time to Interactive (TTI) < 4.0с 2.8с 3.4с Добре 

Cumulative Layout Shift 

(CLS) 

< 0.1 0.05 0.08 Відмінно 

First Input Delay (FID) < 100мс 23мс 67мс Відмінно 

Загальний Performance 

Score 

> 85 96 92 Відмінно 

 

Performance budgets встановлені для критичних metrics як bundle size, 

loading time та runtime performance для запобігання performance regression. 

Automated performance monitoring alerts команду розробників при перевищенні 

performance thresholds та забезпечує proactive performance management. Regular 

performance reviews включають аналіз trends, identification optimization 

opportunities та planning performance improvements для майбутніх releases. 

Scalability testing валідує здатність системи обробляти зростаючі обсяги 

даних та користувачів. Load testing scenarios включають peak usage patterns, stress 

testing beyond normal capacity та endurance testing для prolonged usage periods. 

Database scaling strategies та caching optimization тестуються для забезпечення 

system stability під високим навантаженням та планування infrastructure scaling 

needs. 

Security testing включає валідацію input sanitization, XSS prevention та 

secure data handling practices. Automated security scanning за допомогою tools як 

OWASP ZAP ідентифікує potential vulnerabilities у web application. Penetration 

testing scenarios покривають common attack vectors та забезпечують robust security 

posture для захисту користувацьких даних та system integrity [27, с.212-218]. 
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ВИСНОВКИ 

 

У ході виконання дипломної роботи була розроблена та реалізована 

комплексна інформаційно-пошукова система для гри League of Legends, що 

забезпечує аналіз чемпіонів, надання персоналізованих рекомендацій та 

симуляцію процесу драфту команд. Система успішно вирішує проблему 

фрагментованості та неактуальності ігрової інформації, надаючи користувачам 

централізований інструмент для прийняття обґрунтованих стратегічних рішень 

у грі. 

Проведений аналіз існуючих інформаційно-пошукових систем для 

кіберспортивних дисциплін виявив значні обмеження наявних рішень, 

включаючи відсутність комплексного підходу до аналізу чемпіонів, обмежений 

функціонал для порівняння характеристик та недостатню персоналізацію 

рекомендацій. Дослідження особливостей ігрової механіки League of Legends як 

об'єкта аналізу дозволило визначити ключові параметри для класифікації та 

порівняння чемпіонів, включаючи ролі, складність, тип шкоди та синергію між 

чемпіонами. 

Обґрунтований вибір технологічного стеку React, Vite, TypeScript та Riot 

Games API забезпечив створення масштабованої та ефективної системи з 

високою продуктивністю та зручністю розробки. Використання сучасних веб-

технологій дозволило реалізувати адаптивний користувацький інтерфейс, що 

коректно відображається на різних пристроях та забезпечує оптимальний 

користувацький досвід. 

Розроблена архітектура системи з трьома основними модулями - team 

builder з draft mode, порівняльний аналіз чемпіонів та рекомендаційний модуль - 

демонструє ефективний модульний підхід до проектування складних веб-

додатків. Кожен модуль володіє чітко визначеною відповідальністю та може 

розвиватися незалежно, що забезпечує гнучкість системи та можливість її 

подальшого розширення. 
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Реалізація функціоналу team builder з draft mode надає користувачам 

можливість детального моделювання процесу вибору чемпіонів, що відповідає 

реальним умовам ранкових та турнірних ігор. Система валідації та 

автоматичного аналізу командних композицій допомагає користувачам розуміти 

сильні та слабкі сторони сформованих команд, що має освітню цінність для 

покращення стратегічного мислення гравців. 

Модуль порівняльного аналізу чемпіонів забезпечує комплексну систему 

оцінки та порівняння характеристик різних чемпіонів через інтерактивні 

візуалізації та детальні метрики. Використання різноманітних типів графіків та 

діаграм дозволяє користувачам швидко сприймати складну інформацію та 

приймати обґрунтовані рішення щодо вибору чемпіонів для різних ігрових 

ситуацій. 

Розроблена рекомендаційна система на основі аналізу ролей, складності та 

типу шкоди демонструє ефективне поєднання алгоритмів колаборативної та 

контентної фільтрації. Гібридний підхід забезпечує високу якість рекомендацій 

як для нових користувачів, так і для досвідчених гравців, адаптуючись до 

індивідуальних потреб та преференцій кожного користувача. 

Комплексне тестування користувацького інтерфейсу, включаючи юніт 

тести, інтеграційне тестування та end-to-end тести, підтвердило стабільність та 

надійність розробленої системи. Аналіз ефективності показав високі показники 

продуктивності, відповідність стандартам доступності та оптимальне 

споживання ресурсів на різних пристроях. 

Практична значущість роботи полягає у створенні реального інструменту, 

який може використовуватися мільйонами гравців League of Legends для 

підвищення ефективності їх ігрового процесу. Система забезпечує швидкий 

доступ до актуальної аналітичної інформації, що особливо цінно в умовах 

обмеженого часу під час фази драфту в ранкових іграх. 

Наукова новизна роботи полягає в розробці комплексного підходу до 

аналізу та рекомендації чемпіонів у League of Legends, що інтегрує методи 

обробки даних, машинного навчання та інтерактивної візуалізації. 
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Запропонований підхід може бути адаптований для інших MOBA-ігор та 

кіберспортивних дисциплін з аналогічною механікою. 

Розроблені методи обробки та візуалізації ігрових даних демонструють 

ефективні способи трансформації складної інформації у зрозумілі візуальні 

представлення. Використання сучасних бібліотек візуалізації та інтерактивних 

елементів забезпечує інтуїтивний користувацький досвід та сприяє кращому 

розумінню ігрової механіки. 

Результати роботи підтверджують доцільність використання сучасних веб-

технологій для розробки аналітичних систем у сфері кіберспорту. Створена 

система демонструє високу масштабованість, продуктивність та зручність 

використання, що робить її конкурентоспроможною порівняно з існуючими 

рішеннями на ринку. 

Перспективи подальшого розвитку системи включають інтеграцію 

додаткових джерел даних для підвищення точності аналізу, розширення 

рекомендаційної системи з урахуванням мета-трендів та командної синергії, а 

також додавання функціоналу для аналізу професійних матчів та турнірних 

стратегій. 

Розроблена інформаційно-пошукова система для League of Legends 

успішно досягає поставленої мети та вирішує всі визначені завдання, надаючи 

користувачам потужний інструмент для аналізу ігрових даних та покращення їх 

стратегічних навичок у одній з найпопулярніших кіберспортивних дисциплін 

сучасності. 
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ДОДАТКИ 

ДОДАТОК А 

  

import {Outlet} from "react-router"; 

import Header from "./components/Header/Header.tsx"; 

import Footer from "./components/Footer/Footer.tsx"; 

import {useDispatch, useSelector} from "react-redux"; 

import {useEffect} from "react"; 

import {baseUrl} from "./config/Constants.ts"; 

import {addChampions} from "./state/ChampionsSlice.ts"; 

import {addItems} from "./state/ItemsSlice.ts"; 

import {addMaps} from "./state/MapsSlice.ts"; 

import {addRunes} from "./state/RunesSlice.ts"; 

 

function App() { 

    const dispatch = useDispatch(); 

    const version = useSelector((store: any) => store.version.version) 

 

 

 

    useEffect(() => { 

 

        fetch(`${baseUrl}/cdn/${version}/data/en_US/champion.json`).then(res 

=> res.json()).then(data => dispatch(addChampions(data))); 

 

        fetch(`${baseUrl}/cdn/${version}/data/en_US/item.json`).then(res => 

res.json()).then(data =>  dispatch(addItems(data))) 

 



60 
 

        fetch(`${baseUrl}/cdn/${version}/data/en_US/map.json`).then(res => 

res.json()).then(data =>  dispatch(addMaps(data))) 

 

        

fetch(`${baseUrl}/cdn/${version}/data/en_US/runesReforged.json`).then(res => 

res.json()).then(data =>  dispatch(addRunes(data))) 

    }, [version]); 

 

    return ( 

        <div className='min-h-screen flex flex-col  app-container'> 

            <Header/> 

            <main className='grow h-full'> 

                <Outlet/> 

            </main> 

            <Footer/> 

        </div> 

    ) 

} 

 

export default App 


