
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ВАСИЛЯ СТУСА

БЄЖИН ЄВГЕН ВОЛОДИМИРОВИЧ

Допускається до захисту:

в.о. завідувача кафедри

інформаційних технологій

канд. техн. наук, доцент

__________ О. В. Зелінська

«____»___________ 20__ р.

АЛГОРИТМ ІДЕНТИФІКАЦІЇ ТЕКСТУ ЗА РУХАМИ РУКИ

Спеціальність 122 Комп’ютерні науки

Кваліфікаційна (бакалаврська) робота

Керівник:

П. К. Ніколюк, професор кафедри

інформаційних технологій,

д.ф.-м.н., професор

Оцінка: ______ / ______ / ________
 (бали/за шкалою ЄКТС/за національною шкалою)

Голова ЕК: ________________

Вінниця - 2025

АНОТАЦІЯ

Бєжин Є.В. Розробка алгоритму розпізнавання тексту на основі рухів руки.

Спеціальність 122 «Комп’ютерні науки», освітня програма «Комп’ютерні на-

уки». Донецький національний університет імені Василя Стуса, Вінниця, 2025.

У кваліфікаційній роботі досліджено сучасні методи ідентифікації тексту

за рухами руки з використанням технологій комп’ютерного зору та глибинного

навчання. Розроблено алгоритм на базі Python, OpenCV та TensorFlow, що забез-

печує розпізнавання символів у реальному часі. Система інтегрує модулі відсте-

ження руху, попередньої обробки зображень та класифікації за допомогою згорт-

кових нейронних мереж.

Ключові слова: розпізнавання жестів, комп’ютерний зір, нейронні мережі,

OpenCV, TensorFlow.

67 ст. 27 рис., 2 табл., 5 дод., 18 джерел.

ABSTRACT

Bezhyn Y. Development of a Hand Motion-Based Text Recognition

Algorithm. Specialty 122 «Computer Science», educational program «Computer

Science». Vasyl Stus Donetsk National University, Vinnytsia, 2024.

The thesis explores modern methods of text identification through hand

movements using computer vision and deep learning technologies. A Python-based

algorithm utilizing OpenCV and TensorFlow is developed for real-time character

recognition. The system integrates motion tracking, image preprocessing, and

convolutional neural networks for classification.

Keywords: gesture recognition, computer vision, neural networks, OpenCV,

TensorFlow.

ЗМІСТ

ВСТУП .. 4

РОЗДІЛ 1. ОГЛЯД ТА АНАЛІЗ МЕТОДІВ ІДЕНТИФІКАЦІЇ ТЕКСТУ ЗА

РУХАМИ РУКИ ... 6

1.1 Актуальність теми, мета та задачі дослідження .. 6

1.2 Дослідження предметної області та історії розвитку технологій розпізна-

вання жестів ... 7

1.2.1 Дослідження предметної області розпізнавання жестів 7

1.2.2 Історія розвитку технологій розпізнавання жестів 8

1.3 Огляд сучасних алгоритмів і методів розпізнавання рухів руки 9

1.4 Порівняльний аналіз існуючих підходів та технологій розпізнавання те-

ксту 13

РОЗДІЛ 2. ВИБІР ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ТА ІНСТРУМЕНТІВ

ДЛЯ РОЗРОБКИ АЛГОРИТМУ ... 15

2.1 Аналіз мов програмування та інструментів розробки для алгоритмічних рі-

шень ... 15

2.2 Огляд методів отримання відеоданих для аналізу рухів руки 18

2.3 Проєктування архітектури програмного забезпечення та алгоритму розпі-

знавання ... 20

РОЗДІЛ 3. РЕАЛІЗАЦІЯ АЛГОРИТМУ ІДЕНТИФІКАЦІЇ ТЕКСТУ ЗА

РУХАМИ РУКИ ... 23

3.1 Розробка блок-схеми алгоритму ... 23

3.2 Реалізація алгоритму обробки сигналів та розпізнавання рухів................. 25

3.2.1 Архітектура системи ... 25

3.2.2 Захоплення відео потоку та трекінг траєкторії руки 30

3.2.3 Попередня обробка зображення та зменшення шуму 32

3.2.4 Сегментація контурів та виділення символів .. 33

3.2.5 Формування вхідних векторів для моделі.. 34

3.2.6 Компонент розпізнавання нейромережею ... 35

3.2.7 Інтеграція з користувацьким інтерфейсом .. 38

3.3 Тестування додатку ... 38

3.3.1 Тестування інтерфейсу .. 38

3.3.2 Тестування, валідація та оцінка ефективності алгоритму 41

ВИСНОВКИ ... 45

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ ... 47

ДОДАТКИ .. 49

ДОДАТОК А ... 49

ДОДАТОК Б .. 52

ДОДАТОК В .. 56

ДОДАТОК Г .. 59

ДОДАТОК Ґ .. 61

ВСТУП

У сучасному світі, де інтерактивні технології все глибше інтегруються в

повсякденне життя, важливим напрямом є розробка систем, які забезпечують

природну та інтуїтивно зрозумілу взаємодію між людиною та комп’ютером. Од-

ним із перспективних напрямів є ідентифікація тексту за рухами руки, яка дозво-

ляє користувачам вводити текст без використання клавіатури або сенсорного ек-

рану. Ця технологія має широке застосування в інтерфейсах для людей з обме-

женими можливостями, індустрії додаткової реальності (AR/VR), освітніх систе-

мах, а також у медичних і промислових середовищах, де фізичний контакт із при-

строями є небажаним.

Однак існуючі методи розпізнавання жестів стикаються з кількома викли-

ками. По-перше, точність систем залежить від змін освітлення, фону та індивіду-

альних особливостей почерку користувача. По-друге, традиційні алгоритми (на-

приклад, порогова сегментація або виявлення ознак (HOG/SIFT)) мають обме-

жену ефективність у динамічних умовах. У цьому контексті глибинне навчання

(CNN, LSTM) пропонує більш адаптивні рішення, але вимагає значних обчислю-

вальних ресурсів. Тому актуальним є створення гібридних моделей, які поєдну-

ють класичні методи обробки зображень із досягненнями штучного інтелекту.

Метою даної роботи є аналіз існуючих методів ідентифікації тексту за ру-

хами руки, визначення їх переваг та недоліків, а також розробка алгоритму, який

реалізує цей функціонал. Для досягнення мети вирішувалися такі задачі:

1. Дослідження сучасних підходів до розпізнавання жестів, включаючи ме-

тоди глибинного навчання.

2. Аналіз ефективності алгоритмів у різних умовах (освітлення, шуми, варіа-

тивність жестів).

3. Розробка модульної архітектури програмного забезпечення на основі

Python, OpenCV та MediaPipe.

4. Тестування системи на базі даних EMNIST для оцінки її точності та швид-

кості.

Робота структурована наступним чином: у першому розділі надано огляд

методів розпізнавання жестів, у другому — описано вибір інструментів для реа-

лізації, у третьому — деталізовано архітектуру та експерименти. Висновки міс-

тять рекомендації щодо подальшого вдосконалення системи.

Отримані результати демонструють, що гібридні підходи, які поєднують

класичні алгоритми з глибинним навчанням, є перспективними для створення

адаптивних систем ідентифікації тексту. Це відкриває нові можливості для роз-

витку безконтактних інтерфейсів у різноманітних сферах діяльності.

РОЗДІЛ 1. ОГЛЯД ТА АНАЛІЗ МЕТОДІВ ІДЕНТИФІКАЦІЇ ТЕКСТУ ЗА

РУХАМИ РУКИ

1.1 Актуальність теми, мета та задачі дослідження

У сучасному світі спостерігається стрімкий розвиток технологій розпізна-

вання жестів та рухів рук, що знаходять застосування в різних сферах, включа-

ючи біометричну автентифікацію, біоцифровізацію та альтернативні методи вве-

дення даних. Особливий інтерес викликають системи, здатні ідентифікувати

текст на основі рухів руки, оскільки вони відкривають нові можливості для без-

контактного введення інформації та підвищення зручності користувачів.

Актуальність теми обумовлена потребою в розробці інноваційних мето-

дів введення текстової інформації, які б забезпечували природну та інтуїтивно

зрозумілу взаємодію користувача з комп'ютерними системами. Традиційні ме-

тоди введення, такі як клавіатури та сенсорні екрани, мають певні обмеження,

особливо в умовах, коли фізичний контакт небажаний або неможливий. Техно-

логії розпізнавання рухів руки дозволяють вирішити ці проблеми, забезпечуючи

безконтактне введення тексту та розширюючи можливості користувачів.

Мета дослідження полягає в аналізі існуючих методів ідентифікації тек-

сту за рухами руки, визначенні їх переваг та недоліків, а також виявленні напрям-

ків для подальших досліджень та вдосконалення технологій у цій галузі.

Для досягнення поставленої мети необхідно вирішити такі задачі дослід-

ження:

1. Проаналізувати сучасні методи розпізнавання рухів руки та їх застосу-

вання для ідентифікації тексту.

2. Оцінити ефективність різних підходів до розпізнавання тексту на основі

рухів руки, включаючи використання нейронних мереж та інших алгорит-

мів машинного навчання.

3. Визначити основні виклики та обмеження існуючих методів, а також мож-

ливі шляхи їх подолання.

4. Розглянути перспективи розвитку та впровадження технологій ідентифіка-

ції тексту за рухами руки в різних сферах діяльності.

1.2 Дослідження предметної області та історії розвитку технологій розпі-

знавання жестів

1.2.1 Дослідження предметної області розпізнавання жестів

Розпізнавання жестів є ключовим напрямом у розвитку інтерактивних си-

стем, що забезпечують природну та інтуїтивно зрозумілу взаємодію між люди-

ною та комп'ютером, [16] як це зображено на рис.1.1.

Рисунок 1.1 – Схема розпізнавання жестів

Ця технологія використовується в багатьох сферах, включаючи:

• Інтерфейси для людей з обмеженими можливостями: Розпізна-

вання жестів допомагає покращити комунікацію для осіб з вадами

слуху та мовлення, забезпечуючи перетворення жестової мови на

текст або аудіо [1].

• Інтерактивні презентації та мультимедійні системи: Викорис-

тання жестів для керування презентаціями та мультимедійними ма-

теріалами робить взаємодію більш динамічною та захоплюючою [2].

• Робототехніка та автоматизація: Розпізнавання жестів використо-

вується для дистанційного керування роботами та іншими автомати-

зованими системами, що підвищує ефективність та безпеку операцій

[3].

1.2.2 Історія розвитку технологій розпізнавання жестів

Розвиток технологій розпізнавання жестів пройшов кілька етапів:

• Початкові дослідження (1970-1980-ті роки): Перші спроби розпі-

знавання жестів були пов'язані з використанням спеціальних датчи-

ків та обмежених комп'ютерних можливостей. Основна увага приді-

лялася розпізнаванню окремих жестів у контрольованих умовах.

• Розвиток комп'ютерного зору та машинного навчання (1990-

2000-ні роки): Завдяки прогресу в обробці зображень та розвитку ал-

горитмів машинного навчання, з'явилися системи, здатні розпізна-

вати більш складні жести в реальному часі.

• Сучасні досягнення (2010-ті роки - сьогодення): Інтеграція глибо-

кого навчання та нейронних мереж дозволила досягти високої точ-

ності та швидкості розпізнавання жестів. Сучасні системи здатні

працювати в динамічних умовах з мінімальними вимогами до апа-

ратного забезпечення [4].

1.3 Огляд сучасних алгоритмів і методів розпізнавання рухів руки

Сучасні технології розпізнавання рухів руки базуються на комплексних

підходах, що інтегрують методи комп’ютерного зору, машинного та глибинного

навчання. У цьому розділі розглядаються основні алгоритми та методи, які вико-

ристовуються для аналізу та класифікації жестів, а також обговорюються їх пе-

реваги, недоліки та специфічні виклики.

На початкових етапах розвитку технологій розпізнавання жестів широко

використовувалися методи обробки зображень, які базувалися на виділенні ха-

рактерних ознак (feature extraction). До таких методів належать:

• Histogram of Oriented Gradients (HOG), зображений на рис.1.2

• Scale-Invariant Feature Transform (SIFT), зображений на рис.1.3

• Speeded Up Robust Features (SURF) зображений на рис.1.4

Рисунок 1.2 – Схема HOG

Рисунок 1.3 – Схема SIFT

Рисунок 1.4 – Схема SURF

Ці алгоритми дозволяють ефективно виділяти структурні особливості зо-

бражень рук, що є важливим для подальшої класифікації жестів [5]. Проте їх за-

стосування обмежується необхідністю попередньої підготовки даних та часто за-

лежить від умов освітлення й фону.

Для підвищення точності розпізнавання жестів у системах почали застосо-

вувати класичні алгоритми машинного навчання, такі як:

• Метод опорних векторів (Support Vector Machines, SVM),

• k-ближчих сусідів (k-Nearest Neighbors, k-NN),

• Дерева прийняття рішень.

Ці алгоритми часто використовуються для класифікації жестикуляційних

даних, отриманих після попереднього виділення ознак за допомогою описаних

вище методів. Поєднання традиційного виділення ознак із сучасними алгорит-

мами класифікації дозволяє досягти задовільної точності при розпізнаванні в ко-

нтрольованих умовах [6].

За останнє десятиліття значний прогрес було досягнуто завдяки застосу-

ванню глибинних нейронних мереж, зокрема:

• Convolutional Neural Networks (CNN), які автоматично виділяють реле-

вантні ознаки з зображень рук, схема якої зображена на рис.1.5

• Recurrent Neural Networks (RNN) та їх модифікації, зокрема Long Short-

Term Memory (LSTM), схема якої зображена на рис.1.6, що ефективно

працюють з часовими рядами даних для аналізу послідовностей рухів.

Рисунок 1.5 – Схема CNN

Рисунок 1.6 – Схема LSTM

Інтегровані архітектури, наприклад, CNN-LSTM, дозволяють не лише кла-

сифікувати окремі кадри, а й враховувати динаміку зміни положення руки у про-

сторі, що забезпечує більш точне розпізнавання складних жестів у реальному

часі [7].

З появою глибинних сенсорів (наприклад, камери Kinect) з’явилася мож-

ливість використовувати як кольорову інформацію (RGB), так і дані про глибину

(Depth), що суттєво покращує якість розпізнавання. Об’єднання даних з двох

джерел дозволяє системам розпізнавати жести навіть у складних умовах навко-

лишнього середовища, забезпечуючи більшу стійкість до змін освітлення та

фону [8].

Попри значні досягнення, сучасні алгоритми розпізнавання рухів руки сти-

каються з рядом викликів:

• Варіативність жестів. Різноманітність манер виконання жестів різними

користувачами ускладнює створення універсальних моделей.

• Умови середовища. Зміни в освітленні, фонових зображеннях та часткове

затемнення можуть суттєво впливати на точність розпізнавання.

• Обмеженість навчальних даних. Для навчання глибоких моделей необ-

хідні великі об’єми анотованих даних, що не завжди доступні.

Порівняльний аналіз сучасних підходів свідчить про те, що гібридні мо-

делі, які поєднують класичні алгоритми з методами глибинного навчання, мають

потенціал для досягнення максимальної точності та адаптивності в реальних

умовах [9].

1.4 Порівняльний аналіз існуючих підходів та технологій розпізнавання

тексту

В сучасних дослідженнях, розпізнавання тексту отримало значний розви-

ток завдяки застосуванню як класичних методів обробки зображень, так і інно-

ваційних алгоритмів глибинного навчання. Аналіз літератури свідчить про те, що

традиційні методи, що базуються на пороговій сегментації, фільтрації та виді-

ленні характерних ознак, забезпечують стабільні результати у контрольованих

умовах, проте їх ефективність знижується при зміні умов освітлення або фоно-

вого шуму [10].

Сучасні технології розпізнавання тексту, які використовують нейронні ме-

режі, зокрема Convolutional Neural Networks (CNN) та Recurrent Neural Networks

(RNN), демонструють високу точність завдяки здатності автоматичного виді-

лення релевантних ознак із зображень. Такий підхід дозволяє зменшити залеж-

ність від попередньої обробки даних, що є важливою перевагою в умовах дина-

мічного середовища [11].

До того ж, існують гібридні системи, що поєднують класичні алгоритми з

методами машинного та глибинного навчання, дозволяючи адаптувати алгорит-

ми до специфічних умов експлуатації. Такі системи оптимізують процес розпі-

знавання тексту шляхом комбінації попередньої обробки зображень із сучасними

методами аналізу даних [12].

Особливу увагу приділяють технологіям розпізнавання тексту за допомо-

гою жестів рук. Сучасні інтерактивні системи, що інтегрують обробку відео та

аналіз динамічних послідовностей, здатні враховувати контекст жестового вве-

дення, що дозволяє підвищити зручність та інтуїтивність user interface, хоча й

може дещо поступатися за точністю класичним OCR-системам [13].

Також численні дослідження, опубліковані в Інтернеті, розширюють наше

розуміння даної проблематики. Сучасні статті та огляди, розміщені на таких ре-

сурсах, як arXiv, IEEE Xplore та SpringerLink, демонструють тенденції розвитку

технологій розпізнавання тексту з використанням глибинних нейронних мереж,

що дозволяють досягати високої точності навіть у складних умовах експлуатації

[14]. Сучасні дослідження також пропонують нові підходи до інтеграції класич-

них методів з інноваційними алгоритмами, що відкриває перспективи для ство-

рення більш адаптивних і ефективних систем розпізнавання тексту [15].

Порівняльний аналіз існуючих підходів свідчить про те, що вибір техноло-

гії залежить від конкретних вимог до системи: в умовах стабільного середовища

доцільно застосовувати традиційні методи, тоді як для динамічних та інтерактив-

них систем перевагу надають методам на базі глибинного навчання та інтеграції

жестових технологій.

РОЗДІЛ 2. ВИБІР ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ТА ІНСТРУМЕНТІВ

ДЛЯ РОЗРОБКИ АЛГОРИТМУ

2.1 Аналіз мов програмування та інструментів розробки для алгоритміч-

них рішень

Основними критеріями при виборі мови програмування є швидкість роз-

робки, підтримка бібліотек для обробки зображень і відео, а також можливість

інтеграції з сучасними фреймворками для машинного навчання. Найбільш вда-

лою в цьому контексті є:

• Python:

o Широка екосистема бібліотек, таких як OpenCV для обробки зобра-

жень і відео, MediaPipe для виявлення та аналізу жестів, TensorFlow

або PyTorch для реалізації нейронних мереж.

o Простота синтаксису і велика спільнота дозволяють швидко знахо-

дити приклади використання, рішення для налагодження та оптимі-

зації.

o Підтримка апаратного прискорення (наприклад, за допомогою GPU)

сприяє реалізації алгоритмів реального часу.

Інструменти розробки та середовища

Окрім вибору мови, важливими є засоби для розробки та тестування:

• OpenCV: Забезпечує високоефективні методи обробки зображень, філь-

трації, трансформації кадрів і реалізації алгоритмів виявлення об'єктів.

Приклад роботи зображено на рис.2.1

Рисунок 2.1 – Приклад роботи OpenCV

• MediaPipe: Пропонує готові рішення для трекінгу рук, що дозволяють

отримати координати ключових точок руки з високою точністю. Приклад

роботи зображено на рис.2.2

Рисунок 2.2 – Приклад роботи MediaPipe

• TensorFlow/PyTorch: Забезпечують інструменти для побудови, навчання

та впровадження нейронних мереж, що класифікують послідовності рухів

у конкретні символи чи слова. Приклад моделі нейромережі написаній на

TensorFlow зображено на рис.2.3

Рисунок 2.3 – Приклад роботи TensorFlow

• Flask/Django (за необхідності): Створює веб-інтерфейс або API, через

який можна інтегрувати систему розпізнавання в більші проєкти. Приклад

інтерфейсу, який написано на Flask, зображено на рис.2.4

Рисунок 2.4 – Приклад роботи Flask

Порівняльний аналіз

Розглядаючи альтернативи, можна зазначити, що:

• C++ може бути використано для підвищення продуктивності на етапі ін-

ференсу (продакшену), проте розробка в Python значно спрощує інтегра-

цію бібліотек і алгоритмів.

• JavaScript (через TensorFlow.js) може використовуватися для веб-орієнто-

ваних застосунків, але обмеження браузера можуть бути проблематичними

для задач обробки відео у реальному часі.

Таким чином, Python обрано як основну мову завдяки її зручності, широкій

підтримці інструментів і можливостям для швидкого прототипування.

2.2 Огляд методів отримання відеоданих для аналізу рухів руки

Основні джерела відеоданих

Для отримання якісних відеоданих, необхідних для аналізу жестів і рухів

руки, можуть застосовуватися різні методи:

1. Веб-камера:

o Найпопулярніший і доступний метод, що дозволяє отримувати потік

відео в реальному часі.

o Сучасні веб-камери забезпечують достатню роздільну здатність і ка-

дрову частоту, необхідні для точного розпізнавання швидкоплинних

рухів.

o Недоліком може бути вплив змін освітлення та фону, тому необхідні

методи попередньої обробки зображень.

Приклад веб камер зображено на рис.2.5

Рисунок 2.5 – Веб камера

2. Попередньо записані відео:

o Використовуються для навчання та тестування алгоритмів у контро-

льованих умовах.

o Дає змогу проводити повторну валідацію моделі на однакових да-

них, що сприяє оптимізації алгоритмів.

3. Глибинні камери (Intel RealSense, Kinect):

o Забезпечують не лише двовимірне зображення, але й дані глибини,

що дозволяють точніше визначати положення та орієнтацію руки.

o Підвищують точність сегментації руки на фоні та дозволяють врахо-

вувати 3D-аспекти рухів, що важливо для складних жестів.

Приклад глибинної камери зображено на рис.2.6

Рисунок 2.6 – Intel RealSense

Аспекти обробки відеоданих

При роботі з відеоданими слід враховувати такі моменти:

• Кадрова частота та затримка: Важливо забезпечити обробку відео з мі-

німальною затримкою для реального часу, що критично для інтерактивних

застосунків.

• Якість зображення: Впливає на точність виявлення ключових точок. Не-

обхідно проводити попередню обробку для зменшення шумів та компен-

сації змін освітлення.

• Роздільна здатність: Баланс між деталізацією зображення та обчислюва-

льними витратами, що визначає продуктивність системи.

У даному проєкті для забезпечення оптимальної роботи використовується

веб-камера з високою кадровою частотою, що дозволяє забезпечити стабільну

роботу алгоритму в режимі реального часу.

2.3 Проєктування архітектури програмного забезпечення та алгоритму

розпізнавання

Основні компоненти системи

Архітектура програмного забезпечення побудована за принципом модуль-

ності, що дозволяє окремо розробляти, тестувати та вдосконалювати кожен ком-

понент. Основні модулі включають:

1. Модуль збору відеоданих (Data Acquisition Module):

o Відповідає за захоплення відео з веб-камери або інших джерел.

o Забезпечує буферизацію кадрів, синхронізацію та передачу відеопо-

току до наступних модулів.

o Реалізований з використанням OpenCV, що дозволяє зчитувати кад-

ри з високою частотою.

2. Модуль попередньої обробки (Preprocessing Module):

o Виконує попередню обробку зображень: нормалізацію, зміну роз-

міру, фільтрацію шумів, корекцію кольору.

o Застосовує методи сегментації для виділення області руки, напри-

клад, використання алгоритмів на базі кольорової сегментації або

фонового віднімання.

o Підготовка даних до аналізу дозволяє підвищити точність подаль-

ших етапів розпізнавання.

3. Модуль детекції та відстеження руки (Hand Detection & Tracking

Module):

o За допомогою MediaPipe або спеціалізованих алгоритмів на базі

OpenCV здійснює визначення ключових точок руки (суглоби, па-

льці).

o Забезпечує стабільне відстеження руки навіть при швидких рухах та

зміні позиції.

o Вихідними даними є координати ключових точок, що становлять

скелет руки.

4. Модуль екстракції ознак (Feature Extraction Module):

o На основі координат ключових точок формується вектор ознак, що

описує положення та динаміку рухів.

o Може включати аналіз часових рядів, нормалізацію даних, застосу-

вання методів зменшення розмірності (наприклад, PCA) для спро-

щення моделі.

5. Модуль класифікації рухів (Classification Module):

o Використовує методи машинного навчання для перетворення послі-

довності ознак у конкретні символи або слова.

o Застосовуються нейронні мережі (наприклад, згорткові мережі для

просторового аналізу або рекурентні нейронні мережі, такі як LSTM,

для врахування часових залежностей).

o Модель може бути навченою на спеціально зібраному наборі даних,

що містить приклади рухів різних осіб у різних умовах.

6. Модуль інтеграції результатів та виводу (Output & Integration

Module):

o Отримує результати класифікації, проводить постобробку (напри-

клад, згладжування для усунення шумів) та відображає розпізнаний

текст.

o Може забезпечувати інтеграцію з іншими системами, наприклад, з

мобільним застосунком або веб-інтерфейсом через API.

Взаємодія модулів та обробка в реальному часі

• Синхронізація потоків даних: Забезпечення безперебійної передачі да-

них між модулями, що є особливо важливим для роботи алгоритму в реаль-

ному часі.

• Апаратна оптимізація: Використання можливостей GPU для паралельної

обробки кадрів та виконання обчислювально важких завдань, таких як ін-

ференс нейронних мереж.

• Модульне тестування та налагодження: Кожен компонент окремо тес-

тується, що дозволяє виявити та усунути помилки на ранніх етапах розро-

бки.

Резюме архітектурного рішення

Запропонована архітектура (на рис.2.7) дозволяє забезпечити гнучкість си-

стеми, її мас-штабованість та можливість подальшого вдосконалення. Модульна

структура сприяє адаптації під різні умови експлуатації та дає можливість інтег-

рувати новітні алгоритми для підвищення точності розпізнавання.

Рисунок 2.7 – Архітектура

РОЗДІЛ 3. РЕАЛІЗАЦІЯ АЛГОРИТМУ ІДЕНТИФІКАЦІЇ ТЕКСТУ ЗА

РУХАМИ РУКИ

3.1 Розробка блок-схеми алгоритму

На першому етапі було створено детальну блок-схему, яка ілюструє послі-

довність дій системи від захоплення відеокадру до відображення розпізнаного

тексту, зображена на рис. 3.1.

Рисунок 3.1 – Блок-схема алгоритму ідентифікації тексту за рухами руки.

На блок-схемі зображено наступне:

1. Ініціалізація системи:

o Запуск веб-камери, калібрування області малювання.

o Створення об’єктів класів AirWritingApp (основний контролер) та

DrawingCanvas (віртуальне полотно).

2. Цикл обробки кадрів:

o Захоплення кадру: використання бібліотеки OpenCV для читання ві-

део потоку.

o Попередня обробка:

▪ Дзеркальне відображення (cv2.flip) для імітації дзеркала.

▪ Перетворення у градації сірого (cv2.cvtColor) та бінаризація

(cv2.threshold).

▪ Видалення шумів за допомогою морфологічної операції ерозії

(cv2.erode).

3. Виділення траєкторії руху:

o Фільтрація контурів за розміром та ієрархією (cv2.findContours).

o Запис траєкторії на віртуальне полотно.

4. Сегментація символів:

o Розділення суцільного руху на окремі символи за допомогою аналізу

пауз у русі.

o Обрізка кожного символу з подальшим масштабуванням до 28x28 пі-

кселів.

5. Підготовка даних для нейромережі:

o Нормалізація пікселів у діапазон [0, 1].

o Перетворення зображення у 1D масив (784 елементи).

6. Класифікація:

o Використання попередньо навченої згорткові нейромережі (CNN)

для передбачення символу.

o Відображення результату через інтерфейс користувача.

7. Оновлення інтерфейсу:

o JavaScript-код для періодичного запиту результатів (fetch кожні 5 се-

кунд).

o Відображення проміжних результатів у реальному часі.

Обґрунтування циклічності: система працює в режимі реального часу за-

вдяки асинхронній обробці кадрів та періодичним запитам до сервера. Це дозво-

ляє користувачеві бачити результати без затримок, навіть під час безперервного

малювання.

3.2 Реалізація алгоритму обробки сигналів та розпізнавання рухів

3.2.1 Архітектура системи

У цьому проєкті для організації взаємодії між інтерфейсом користувача

(View), логікою представлення даних і сервісами розпізнавання жестів застосо-

вано архітектурний паттерн MVVM (Model–View–ViewModel).

Переваги застосування MVVM у даному випадку:

1. Чітке розділення обов’язків: UI-код не містить жодної логіки обробки зо-

бражень чи розпізнавання — він лише відображає те, що отримав від

ViewModel.

2. Полегшене тестування: усі ключові сценарії (розпізнавання жестів, нор-

малізація даних, оновлення тексту) можна протестувати на рівні

ViewModel без використання браузера чи камери.

3. Масштабованість: при необхідності можна легко замінити частину UI

(змінити веб-сторінку на desktop client) або реалізувати нові режими вводу,

не змінюючи Model.

4. Підтримка асинхронності: MVVM дозволяє красиво вбудувати async-ме-

тоди обробки кадрів та запитів до нейромережі, не блокуючи відображення

та забезпечуючи плавний UX.

Таким чином, впровадження MVVM зробило архітектуру програми стійкі-

шою, зрозумілішою для подальшого розвитку і полегшило інтеграцію різних те-

хнологічних шарів (OpenCV → GestureWriter → AirWritingApp → MainPage).

Нижче на рис.3.2 наведено UML-діаграму основних компонентів про-

грами, що ілюструє взаємодію модулів для захоплення, обробки відео потоку та

розпізнавання рукописних символів у повітрі:

Рисунок 3.2– Архітектура компонентів системи розпізнавання рухів руки

(UML-діаграма).

Компоненти діаграми:

• Camera — керує підключенням до камери та отриманням відео потоку.

Підключення відбувається у функції find_cameras, що наведена нижче.

Функція не використовується - залишена для можливого розширення

функціоналу програми

def find_cameras(max_cameras: int = 2) -> List[Dict[str, str]]:

 cameras = []

 for i in range(max_cameras):

 cap = cv2.VideoCapture(i)

 if cap.isOpened(): камеру

 cameras.append({'id': i, 'name': cap.getBackendName()})

 cap.release()

 else:

 print(f"Не вдалося відкрити камеру з індексом {i}.") # Виво-

димо повідомлення, якщо камеру не вдалося відкрити

 return cameras # Повертаємо список знайдених камер

• DrawingCanvas — реалізує відрисовку руху руки на віртуальному поло-

тні за допомогою малювання крапок та ліній. Функція малювання

draw_line наведено нижче:

def draw_line(self, x: int, y: int, color: Tuple[int, int, int] =

(255, 255, 255), size: int = 20):

 # Якщо попередні координати існують

 if self.prev_x is not None and self.prev_y is not None:

 # Малюємо лінію

 cv2.line(self.canvas, (self.prev_x, self.prev_y), (x, y),

color, size)

 self.prev_x, self.prev_y = x, y # Оновлюємо попередні коорди-

нати

• HandTracker — відслідковує положення руки та витягує координати

ключових точок (код наведено нижче):

def get_finger_position(self, frame: np.ndarray) ->

Optional[Tuple[int, int]]:

 h, w, _ = frame.shape

 # Отримуємо розміри зображення

 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 # Перетворюємо зображення у формат RGB

 results = self.hands.process(frame_rgb)

 if results.multi_hand_landmarks:

 for hand_landmarks in results.multi_hand_landmarks:

 index_finger_tip =

hand_landmarks.landmark[self.mp_hands.HandLandmark.INDEX_FINGER_TI

P]

 x, y = int(index_finger_tip.x * w), int(index_finger_tip.y *

h)

 return x, y

 return None

• GestureWriter — розпізнає жести та перетворює їх у символи або текст

за допомогою нейромережі. В цьому класі реалізована логіка, яка прий-

має дані у вигляді масивів, нормалізує їх – тобто приводить у робочій

стан для нейромережі. Далі відбувається обробка наступним чином:

def recognize_letter(self, data: List[int]) -> Tuple[str, float]:

 # Прогнозуємо мітку для зображення

 prediction = self.model.predict(self.normalize_image(data))

 predicted_class = np.argmax(prediction)

 # Знаходимо індекс найбільш ймовірного класу

 confidence = np.max(prediction)

 # Впевненість у прогнозі

 return emnist_labels[predicted_class], confidence

 # Повертаємо літеру та впевненість

• AirWritingApp — основний клас додатку, координує роботу камери,

трекінгу та візуалізації. В цьому класі у головній функції run ініціалізо-

вано нескінченний цикл, який щосекундно приймає кадр із камери кори-

стувача та передає цей кадр до вищеперерахованих класів, які в свою

чергу виконують свою роботу по відображенню руху пальця та поверта-

ють результат для подальшого передбачення.

• MainPage — відповідає за відображення та логіку головної веб-сторінки

таким чином:

@app.route('/')

def index() -> str:

 return render_template('index.html')

 # Відображення головної сторінки за допомогою шаблону

• KNNTrainer — проводить навчання моделі KNN, збереження та заван-

таження ваг, код створення моделі наведено нижче:

Створюємо модель

 self.model = Sequential([

 Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28,

1)),

 # Перший згортковий шар

 MaxPooling2D((2, 2)),

 # Шар підвибірки

 Conv2D(64, (3, 3), activation='relu'),

 # Другий згортковий шар

 MaxPooling2D((2, 2)),

 # Шар підвибірки

 Flatten(),

 # Перетворюємо дані в одномірний вектор

 Dense(128, activation='relu'),

 # Повнозв'язний шар

 Dropout(0.5),

 # Шар регуляризації (відключення половини нейронів)

 Dense(num_classes, activation='softmax')

 # Вихідний шар з кількістю нейронів = кількості класів

])

 # Компіляція моделі

 self.model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

 print("Починаємо навчання...")

 # Навчаємо модель

 self.model.fit(X_train, y_train_categorical, epochs=10,

batch_size=128, validation_data=(X_test, y_test_categorical))

 # Зберігаємо модель

 self.model.save("emnist_cnn_model.h5")

 print(f"Модель збережено у файл {model_file}")

• Config — завантажує та зберігає налаштування програми, код наведено

нижче:

Імпортуємо модуль os для роботи з файловою системою

import os

Імпорт dotenv для завантаження змінних оточення

from dotenv import load_dotenv

Завантажуємо змінні оточення з .env-файлу

load_dotenv()

Отримуємо абсолютний шлях до папки, де знаходиться цей скрипт

parent_dir = os.path.dirname(os.path.abspath(__file__))

Приклад формування шляху до файлу

resultFile = os.path.join(parent_dir, '', "result.png")

Формуємо шлях до папки knn для зберігання навчальних даних та

моделі

train_data_folder = os.path.join(parent_dir, '', "knn")

3.2.2 Захоплення відео потоку та трекінг траєкторії руки

Першим кроком є безперервне отримання кадрів з камери. У головному

контролері програми встановлюється зв’язок із пристроєм захоплення (веб-ка-

мера або зовнішня камера), зчитаними ним в режимі реального часу та відобра-

женними кадрами. Відповідний код наведено нижче:

ret, frame = self.cap.read() # Читання кадру з відеопотоку

if not ret: # Якщо кадр не отримано, виходимо

 break

frame = cv2.flip(frame, 1) # Дзеркальне відображення зображення

по горизонталі

h, w, _ = frame.shape # Отримуємо розміри кадру

if self.canvas is None: # Якщо полотно ще не створено, створюємо

його

 self.canvas = DrawingCanvas(400, 400)

Для зручності відображення та більш інтуїтивного керування користувач

бачить власні руки дзеркально, тому кожен кадр відразу відображається по гори-

зонталі.

Далі виконується виявлення положення руки на зображенні — у простішій

реалізації це може бути відстеження кольору рукавички чи ключових точок (на-

приклад, кінчиків пальців). В даному ж випадку, як і було зазначено раніше, була

використана бібліотека mediapipe, яка має можливість розпізнавати руку, або

інші частини тіла людини та фіксувати ключові точки як це зображено на рис.3.3.

Рисунок 3.3– Ключові точки на лівій руці людини

Пройшовши верифікацію на наявність руки, система намагається розпі-

знати, чи намагається рука продемонструвати який-небудь жест, наприклад ве-

ликий палець піднятий догори, що за логікою програми означає *збереження на-

мальованої літери/літер*. Нижче приводиться код для розпізнавання великого

пальця піднятого догори

def is_thumb_up(self, frame: np.ndarray) -> bool:

 # Обробляємо зображення для пошуку рук

 results = self.hands.process(cv2.cvtColor(frame,

cv2.COLOR_BGR2RGB))

 if results.multi_hand_landmarks:

 # Якщо знайдено руки

 for hand_landmarks in results.multi_hand_landmarks:

self.mp_hands.HAND_CONNECTIONS)

 landmarks = hand_landmarks.landmark

 # Отримуємо координати всіх точок на руці

 thumb_tip =

landmarks[self.mp_hands.HandLandmark.THUMB_TIP]

 thumb_cmc =

landmarks[self.mp_hands.HandLandmark.THUMB_CMC]

 index_tip =

landmarks[self.mp_hands.HandLandmark.INDEX_FINGER_TIP]

 index_mcp =

landmarks[self.mp_hands.HandLandmark.INDEX_FINGER_MCP]

 middle_tip =

landmarks[self.mp_hands.HandLandmark.MIDDLE_FINGER_TIP]

 middle_mcp =

landmarks[self.mp_hands.HandLandmark.MIDDLE_FINGER_MCP]

 ring_tip =

landmarks[self.mp_hands.HandLandmark.RING_FINGER_TIP]

 ring_mcp =

landmarks[self.mp_hands.HandLandmark.RING_FINGER_MCP]

 pinky_tip =

landmarks[self.mp_hands.HandLandmark.PINKY_TIP]

 pinky_mcp =

landmarks[self.mp_hands.HandLandmark.PINKY_MCP]

 # Перевіряємо, чи великий палець вище його основи

 thumb_up = thumb_tip.y < thumb_cmc.y

 # Перевіряємо, чи інші пальці зігнуті

 fingers_folded = (

 index_tip.y > index_mcp.y

 and middle_tip.y > middle_mcp.y

 and ring_tip.y > ring_mcp.y

 and pinky_tip.y > pinky_mcp.y

)

 if thumb_up and fingers_folded:

 return True

 return False

 return False

Якщо ж жодного жесту не розпізнано, це означає, що вмикається режим

малювання, наведений нижче:

if (not self.tracker.fist_detect(frame)) and self.is_write: #

Якщо кулак не виявлений і малювання увімкнене

 finger_pos = self.tracker.get_finger_position(frame) # Отри-

муємо координати вказівного пальця

 if finger_pos:

 # Якщо координати пальця знайдені

 x, y = finger_pos

 # Витягуємо координати

 self.canvas.draw_line(x, y)

 # Малюємо лінію на полотні по координатах

else:

 self.canvas.clear_prev()

 # Якщо кулак виявлений, очищуємо попередні координати

canvas_img = self.canvas.get_canvas()

Отримуємо зображення полотна

Система фіксує координати руки на робочому полотні (DrawingCanvas),

перетворюючи їх у відповідні піксельні значення. Таким чином, рух пальця

сприймається як *ледве помітний пензель*, що малює в повітрі.

3.2.3 Попередня обробка зображення та зменшення шуму

Оскільки потік відео може містити значні перешкоди — змінне освітлення,

тремтіння камери, фоновий рух — перед сегментацією символів необхідно про-

вести низку операцій фільтрації. По-перше, зображення переводять у відтінки

сірого, щоб позбавитися від колірної інформації, неважливої для виявлення кон-

туру. Нижче наведено код, що реалізує даний функціонал.

def get_single_letter(self) -> np.ndarray:

 gray_canvas = cv2.cvtColor(self.canvas, cv2.COLOR_BGR2GRAY) #

Перетворюємо у градації сірого

 resized_canvas = cv2.resize(gray_canvas, (28, 28),

interpolation=cv2.INTER_NEAREST)

 # Змінюємо розмір на 28x28

 flattened_array = resized_canvas.flatten()

Перетворюємо у 1D масив

 return flattened_array

Далі застосовується порогова бінаризація, яка чітко відділяє *малюнок*

(темні штрихи) від фону — достатньо буде чітко підібрати значення порогу, щоб

помах руки *відображався* насичено.

Щоб видалити дрібні точки шуму, які з’являються внаслідок невеликих ко-

ливань камери чи артефактів обчислень, застосуємо морфологічні операції: еро-

зію для усунення зайвих частинок та, за необхідності, дилатацію для відновлення

товщини ліній. В результаті полотно набуває вигляду суцільної чорно-білої ма-

ски, де чітко виокремлені області майбутніх символів.

3.2.4 Сегментація контурів та виділення символів

Після фільтрації алгоритм виконує пошук контурів. Для цього використо-

вується метод, який перебирає усі знайдені контури та відкидає вкладені (ті, що

є прогалинами всередині інших). Лише зовнішні контури вважаються потенцій-

ними літерами.

Кожен зовнішній контур обмежується прямокутником, після чого зобра-

ження символу *вирізається* з основного полотна. Оскільки траєкторії букв мо-

жуть бути нерівномірними (деякі літери *високі*, інші — *широкі*), для збере-

ження пропорцій обрізані області відцентровують у квадраті, що заповнений бі-

лим фоном, та масштабують до стандартного розміру 28×28 пікселів. Це гаран-

тує, що модель отримає однаковий розмір вхідного зображення, незалежно від

початкової форми символу. Реалізація функціоналу наведена нижче:

def get_several_letters(self) -> List[np.ndarray]:

 gray_canvas = cv2.cvtColor(self.canvas, cv2.COLOR_BGR2GRAY)

 # Перетворюємо у градації сірого

 ret, thresh = cv2.threshold(gray_canvas, 0, 255,

cv2.THRESH_BINARY)

 # Бінаризація

 img_erode = cv2.erode(thresh, np.ones((3, 3), np.uint8),

iterations=1)

 # Видаляємо шуми

 # Отримуємо контури

 contours, hierarchy = cv2.findContours(img_erode,

cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

 letters = []

 for idx, contour in enumerate(contours):

 (x, y, w, h) = cv2.boundingRect(contour)

 # Визначаємо координати та розміри букви

 if hierarchy[0][idx][3] == -1:

 # Перевіряємо, чи це зовнішній контур

 letter_crop = gray_canvas[y:y + h, x:x + w]

 # Вирізаємо букву

 size_max = max(w, h)

 # Визначаємо максимальну сторону квадрата

 # Створюємо квадратне зображення букви

 letter_square = 255 * np.ones(shape=[size_max,

size_max], dtype=np.uint8)

 if w > h: # Якщо буква ширша, ніж вища

 y_pos = size_max // 2 - h // 2

 letter_square[y_pos:y_pos + h, 0:w] = letter_crop

 elif w < h: # Якщо буква вища, ніж ширша

 x_pos = size_max // 2 - w // 2

 letter_square[0:h, x_pos:x_pos + w] = letter_crop

 else: # Якщо буква квадратна

 letter_square = letter_crop

 # Додаємо букву у список (x-координата + саме зобра-

ження)

 letters.append((x, cv2.resize(letter_square, (28, 28),

interpolation=cv2.INTER_AREA)))

 # Сортуємо букви за їх позицією на полотні

 letters.sort(key=lambda x: x[0])

 letters_array = [letter[1] for letter in letters]

 # Масив зображень букв (28x28)

 return letters_array

3.2.5 Формування вхідних векторів для моделі

Після сегментації кожне квадратне зображення символу перетворюється

на одномірний масив пікселів (flatten). Піксельні значення нормалізуються до ін-

тервалу [0, 1], щоб уникнути впливу абсолютних інтенсивностей на передба-

чення моделі. Додатково до цього додається вимір *каналу* — у готовому век-

торі формується *частка* для параметрів розпізнавання, але основний фокус

припадає на піксельні інтенсивності. Побачити цей масив можна за допомогою

службових функцій, наприклад print_data_array.

 s = ','.join(map(str, flattened_array))

 # Готовий масив для подачі у нейромережу

 print(s)

3.2.6 Компонент розпізнавання нейромережею

Після перетворення у вектор (або у масив векторів залежно від кількості

контурів літер, що були розпізнані) передається у клас для роботи з нейромере-

жею, де сам вектор нормалізується до формату необхідного для нейромереж. Цей

код наведено таким чином:

def normalize_image(self, data: List[int]) -> np.ndarray:

 image_data = np.array(data)

 # Перетворюємо дані в numpy масив

 image_data = image_data.reshape(28, 28)

 # Перетворюємо в розмір 28x28

 image_data = image_data.astype("float32") / 255.0

 # Нормалізуємо зображення

 image_data = np.expand_dims(image_data, axis=-1)

 # Додаємо розмірність для каналу

 image_data = np.expand_dims(image_data, axis=0)

 # Додаємо розмірність для партії

 return image_data.T

 # Повертаємо транспоноване зображення

Нормалізований вектор подається на вхід згорткової нейронної мережі

(CNN), побудованої на основі двох згорткових блоків. Архітектура мережі пред-

ставлена на рис.3.4.

Рисунок 3.4– Архітектура згорткової нейронної мережі

1. Вхідний шар: 28×28×1 (відтінки сірого).

2. Перший згортковий блок:

o Conv2D (32 фільтри 3×3), активація ReLU;

o MaxPooling2D (2×2).

3. Другий згортковий блок:

o Conv2D (64 фільтри 3×3), активація ReLU;

o MaxPooling2D (2×2).

4. Flatten: перетворення карти ознак у вектор довжиною 3136 елементів.

5. Dense: 128 нейронів, активація ReLU.

6. Dropout: ймовірність 0,5.

7. Вихідний шар: Dense з K нейронами (кількість класів), активація softmax.

Активаційні функції та функції втрат

• ReLU використовується для усунення проблеми затухаючого градієнта.

Вона залишає позитивні значення без змін, а всі негативні замінює на нуль.

Це допомагає нейронній мережі краще та швидше навчатись.:

𝑓(𝑥) = max(0, 𝑥) (3.1)

де: f(x)— вихідне значення після застосування активації; x — вхідне зна-

чення нейрона.

• Softmax:

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

, 𝑖 = 1,… , 𝐾 (3.2)

де: σ(z)i — ймовірність належності до класу i; zi— логіт (вихід перед акти-

вацією) для класу i; K — загальна кількість класів.

• Крос-ентропія:

𝐿 = −∑ 𝑦𝑖
𝐾
𝑖=1 log(𝑦𝑖̂) (3.3)

де: L — значення функції втрат; K — кількість класів; yi — справжнє зна-

чення для класу i (у one-hot представленні: 1 або 0); 𝑦𝑖̂ — передбачена ймовір-

ність належності до класу i.

Після forward pass мережа генерує вектор ймовірностей розмірністю 62

елементи — по 10 для цифр, 26 для великих та 26 для малих літер. Якщо векторів

декілька, вони обробляються послідовно функцією recognize_letter.

def recognize_letter(self, data: List[int]) -> Tuple[str, float]:

 # Прогнозуємо мітку для зображення

 prediction = self.model.predict(self.normalize_image(data))

 predicted_class = np.argmax(prediction)

 # Знаходимо індекс найбільш ймовірного класу

 confidence = np.max(prediction)

 # Впевненість у прогнозі

 return emnist_labels[predicted_class], confidence

 # Повертаємо літеру та впевненість

З вихідного вектору вибирається індекс максимального значення — перед-

бачена мітка. Цей індекс використовують для пошуку відповідного символу у

словнику EMNIST:

Словник відповідності індексів символам EMNIST

emnist_labels = {

 **{i: str(i) for i in range(10)}, # 0-9 (цифри)

 **{i + 10: chr(65 + i) for i in range(26)}, # 10-35 (A-Z)

 **{i + 36: chr(97 + i) for i in range(26)} # 36-61 (a-z)

}

Відповідність числових міток та символів у наборі даних EMNIST насту-

пна:

• мітки 0–9 → символи '0'–'9';

• мітки 10–35 → великі літери латиниці ‘A’–‘Z’;

• мітки 36–61 → малі літери латиниці ‘a’–‘z’.

Таким чином, будь-яке передбачення моделі у вигляді числа від 0 до 61

автоматично переводиться в символ, який розуміє людина.

3.2.7 Інтеграція з користувацьким інтерфейсом

Для відображення результатів у режимі реального часу клієнтська частина

на JavaScript періодично надсилає запит на серверний endpoint, який повертає

останню розпізнану літеру. Отримане значення записується у визначене поле у

XHTML-розмітці. Приклад коду наведено нижче:

// Отримуємо дані з сервера з інтервалом 5 секунд (можна скоротити

або збільшити)

setInterval(() => {

 fetch('/get_letters', { method: 'POST' })

 .then(response => {

 if (!response.ok) throw new Error(`Помилка сервера:

${response.status}`);

 return response.json(); // Перетворюємо JSON

 })

 .then(data => {

 valueRez.innerText = data.letter; // Відображаємо

отриману букву

 })

 .catch(error => console.error('Помилка:', error));

}, 5000);

Такий підхід дозволяє оновлювати відображення без перезавантаження

сторінки, забезпечуючи плавний UX. Інтервал запиту (5 с за замовчуванням) мо-

жна коригувати залежно від швидкості написання користувачем та параметрів

камери.

3.3 Тестування додатку

3.3.1 Тестування інтерфейсу

Запуск програми відбувається на сервері, що має відповідний домен ад-

ресу, для тесту, програма була запущена на localhost наступним чином:

• В main було вказано порт host програми як 0.0.0.0 та порт на якому буде

працювати програма, 5000, код конфігурації наведено нижче :

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5000, debug=True)

 # запуск Flask програми на localhost

При коректному запуску в консолі відображається інформація як на

рис.3.5, де вказано інформацію про завантаження або навчання нейроме-

режі та інформацію щодо host на якому запущена програма.

Рисунок 3.5 – Log запуску програми

• 2) Відкрити будь-який браузер (Chrome, Firefox, Opera або Microsoft Edge)

за посиланням, яке вказане в рядку *Running on*, та побачити результат.

Зовнішній вигляд додатку зображено на рис.3.6.

Рисунок 3.6 – Зовнішній вигляд програми

Розпізнавання цифри 4 зображено на рис.3.7.

Рисунок 3.7– Розпізнавання звичайної цифри

Розпізнавання нечітко намальованої літери А зображено на рис.3.8.

.

Рисунок 3.8– Розпізнавання нечітко намальованої літери

3.3.2 Тестування, валідація та оцінка ефективності алгоритму

Для оцінки ефективності алгоритму було проведено низку експериментів

у контрольованих умовах. Основна мета полягала у визначенні точності розпі-

знавання, стабільності роботи системи та часу відгуку.

1. Умови проведення:

o Обладнання: веб-камера з роздільною здатністю 1280×720 пікселів, пе-

рсональний комп’ютер з процесором Intel Core i7-11800H та 32 ГБ ОЗП.

o Програмне забезпечення: система реалізована на Python 3.9 з викори-

станням бібліотек OpenCV 4.5.5 та TensorFlow 2.8. Веб-інтерфейс роз-

роблено на Flask 2.0.

o Освітлення: штучне освітлення без різких перепадів яскравості.

o Фон: однорідний світлий фон без рухомих об’єктів.

2. Протокол тестування:

o Для кожного символу (k, j, z, i, Q) виконано 10 повторень.

o Символи малювались послідовно з паузою 2 секунди між спробами.

3. Критерії оцінки:

o Успішна спроба: символ розпізнано правильно з першого разу.

o Невдала спроба: система повернула неправильний символ або не ви-

вела результат.

o Точність: Співвідношення вдало виконаних спроб до невдалих.

Результати експерименту

Результати тестування представлені у таблиці 3.1:

Таблиця 3.1 Результати тестування

Символ
Успішні

спроби

Невдалі

спроби
Точність

k 8 2 80%

j 7 3 70%

z 10 0 100%

i 6 4 60%

Q 10 0 100%

Загальна точність: 82% (41/50). Нижче наведено зображення інтерфейсу

під час розпізнавання k, j, z, i, Q на рис.3.9-3.14

Рисунок 3.9-3.14 – Скріншоти програми, що розпізнає k, j, z, i, Q

Аналіз результатів

1. Висока точність для символів *z* та *Q* (100%):

o z: унікальна зигзагоподібна форма зменшує ймовірність плутанини.

o Q: чіткий замкнутий контур із хвостиком легко ідентифікується.

2. Помилки для *k* та *j*:

o k → r: нижня петля *k* часто недостатньо розроблялася, що призво-

дило до схожості з *r*.

o j → g: крапка над *j* інтерпретувалась як частина іншого символу

через швидкий рух руки.

3. Низька точність для *i* (60%):

o Вертикальна лінія без крапки система сприймала як *l*.

o Проблема виникла через недостатню чутливість до дрібних деталей

(наприклад, крапки).

Джерела похибок

1. Особливості почерку:

o Нахил, розмір символу та швидкість малювання впливають на якість

контурів.

2. Обмеження бінаризації:

o Адаптивний поріг не завжди ефективний при змінній яскравості.

3. Шум у кадрі:

o Навіть незначні рухи фону можуть створювати помилкові контури.

У таблиці 3.2 порівнюються результати створеної системи із вже існую-

чими рішеннями:

Таблиця 3.2 Порівняння з існуючими рішеннями

Параметри Моя система AirScript [17] RetinaNet ResNet-50 [18]

Точність 82% 85% 79%

Вимоги до ПЗ Низькі Середні Високі

Переваги системи:

• Оптимізована робота з низькою роздільною здатністю камер.

• Мінімальні затримки завдяки ефективній нормалізації даних.

Пропозиції для оптимізації

1. Вдосконалення сегментації:

o Впровадження алгоритму Watershed для точнішого розділення пере-

криваючих контурів.

2. Адаптивна бінаризація:

o Використання Otsu’s method для динамічного вибору порогу яскра-

вості.

3. Контекстне розпізнавання:

o Інтеграція мовних моделей для корекції помилок на основі послідо-

вності символів.

4. Калібрування інтерфейсу:

o Додавання інструментів для коригування чутливості до розміру сим-

волу та швидкості руху.

ВИСНОВКИ

У процесі виконання кваліфікаційної роботи було проведено комплексне

дослідження методів ідентифікації тексту за рухами руки, проаналізовано су-

часні підходи до розпізнавання жестів та розроблено алгоритм, який реалізує цю

функціональність.

Основні результати та висновки:

1. Аналіз існуючих технологій

Виявлено, що традиційні методи (наприклад, порогова сегментація, виді-

лення ознак HOG/SIFT) ефективні у контрольованих умовах, але мають об-

меження при зміні освітлення або фону. Методи глибинного навчання

(CNN, LSTM) забезпечують вищу точність завдяки автоматичному аналізу

просторових і часових характеристик рухів, що робить їх більш адаптив-

ними до реальних умов.

2. Розробка системи

Створено модульну архітектуру програмного забезпечення, яка включає:

• Захоплення та попередню обробку відеопотоку (OpenCV, MediaPipe

для трекінгу рук);

• Сегментацію символів та формування вхідних векторів для нейрон-

ної мережі;

• Класифікацію рухів за допомогою CNN на основі бази даних

EMNIST.

3. Експериментальні результати

Тестування показало загальну точність 82% у розпізнаванні символів (на-

приклад, *z*, *Q* — 100%, *i* — 60%). Найбільші виклики виникли через

шуми, особливості почерку користувача та недосконалість бінаризації зо-

браження.

4. Оптимізація та перспективи

Запропоновано шляхи підвищення ефективності:

• Впровадження алгоритмів Watershed та адаптивної бінаризації

Otsu’s method для покращення сегментації;

• Використання LSTM для аналізу часових залежностей рухів;

• Інтеграцію контекстного розпізнавання для зменшення кількості по-

милок.

5. Практична значимість

Розроблений алгоритм може бути використаний у інтерактивних системах

для людей з обмеженими можливостями, в освіті, індустрії додаткової ре-

альності тощо. Його гнучка архітектура дозволяє адаптувати систему до

різних умов експлуатації.

Отримані результати підтверджують доцільність використання гібридних

підходів, що поєднують класичні методи обробки зображень із глибинним на-

вчанням, для створення ефективних систем ідентифікації тексту за рухами руки.

Подальші дослідження слід зосередити на оптимізації продуктивності та розши-

ренні підтримки багатомовних баз даних.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Bayegizova A., Murzabekova G., Ismailova A., Aitimova U., Mukhanova A.,

Beldeubayeva Z., Ainagulova A., Naizagarayeva A. "Efficiency of using algorithms

and methods of artificial technologies for sign language recognition for people with

disabilities" // Eastern-European Journal of Enterprise Technologies. – 2022. – Режим

доступа: https://doi.org/10.15587/1729-4061.2022.262509

2. Underkoffler: управління комп’ютером за допомогою жестів // Презента-

ция. – 2014. – Режим доступа: https://www.slideserve.com/frisco/underkoffler

3. Коваленко О. В. Дослідження методів розпізнавання жестів та формування

системи управління на їх основі [Електронний ресурс] // Харківський національ-

ний університет радіоелектроніки. – 2023. – Режим доступу:

https://openarchive.nure.ua/server/api/core/bitstreams/bb060daa-a00e-473f-a217-

665f798b9f0d/content

4. Олексійко Ю. Р. Розробка програмної системи розпізнавання жестів для

взаємодії з комп'ютерними системами [Електронний ресурс] // Тернопільський

національний технічний університет імені Івана Пулюя. – 2023. – Режим доступу:

https://elartu.tntu.edu.ua/bitstream/lib/44465/1/dyplom_Oleksiyko_Y_2023.pdf

5. Петров П. І. «Методи обробки зображень для розпізнавання жестів». –

Київ: Наукова думка, 2019.

6. Іваненко О. С. «Глибокі нейронні мережі в розпізнаванні жестів». – Львів:

Видавництво Львівського університету, 2020.

7. Ковальчук М. В. «Аналіз методів розпізнавання рухів руки з використан-

ням CNN-LSTM». – Одеса: Технічна література, 2021.

8. Шевченко А. Л. «Використання глибоких сенсорів у системах розпізна-

вання жестів». – Харків: Наукова думка, 2022.

9. Сидоренко В. П. «Порівняльний аналіз алгоритмів розпізнавання рухів

руки». – Дніпро: Технічна думка, 2023.

10. Петренко О. В. «Сучасні технології розпізнавання тексту». – Київ: Наукова

думка, 2020.

https://doi.org/10.15587/1729-4061.2022.262509
https://www.slideserve.com/frisco/underkoffler
https://openarchive.nure.ua/server/api/core/bitstreams/bb060daa-a00e-473f-a217-665f798b9f0d/content
https://openarchive.nure.ua/server/api/core/bitstreams/bb060daa-a00e-473f-a217-665f798b9f0d/content
https://elartu.tntu.edu.ua/bitstream/lib/44465/1/dyplom_Oleksiyko_Y_2023.pdf

11. Смирнов А. П. «Методи оптичного розпізнавання символів». – Харків: Ви-

давництво Харківського університету, 2019.

12. Козак І. О. «Розпізнавання тексту за допомогою глибинного навчання». –

Львів: Львівський політехнічний інститут, 2021.

13. Гончаренко М. В. «Порівняльний аналіз систем розпізнавання тексту». –

Одеса: Технічна література, 2022.

14. Liu, W. et al. «Scene Text Recognition: Recent Advances and Future Trends».

[Електронний ресурс]. – Режим доступу: https://arxiv.org/abs/2102.09672, 2020.

15. Балалаєва О. Ю., ЧичкарьовЄ.А., ЗінченкоО.В., Сергієнко А.В., Ковальов

О.О. ДОСЛІДЖЕННЯ ТА ОЦІНКА ЕФЕКТИВНОСТІ МЕТОДОЛОГІЙ

РОЗПІЗНАВАННЯ РУКОПИСНИХ СИМВОЛІВ З ВИКОРИСТАННЯМ

ЗГОРТКОВИХ НЕЙРОННИХ МЕРЕЖ [Електронний ресурс]. – Режим доступу:

https://journals.uran.ua/vestnikpgtu_tech/article/view/299989.

16. Hongyi Liu, Lihui Wang. «Gesture recognition for human-robot collaboration:

A review." ». [Електронний ресурс]. – Режим доступу:

https://www.sciencedirect.com/science/article/abs/pii/S0169814117300690

17. Ayushman Dash13, Amit Sahu13, Rajveer Shringi13, John Gamboa4,

Muhammad Zeshan Afzal4, Muhammad Imran Malik2, Sheraz Ahmed2 and Andreas

Dengel2 «AirScript - Creating Documents in Air» [Електронний ресурс]. – Режим

доступу: https://ar5iv.labs.arxiv.org/html/1705.11181

18. Kapitanov Alexander, Kvanchiani Karina, Nagaev Alexander, Kraynov Roman,

Makhliarchuk Andrei «HaGRID – HAnd Gesture Recognition Image Dataset" ». [Еле-

ктронний ресурс]. – Режим доступу: https://arxiv.org/abs/2206.08219

https://arxiv.org/abs/2102.09672
https://journals.uran.ua/vestnikpgtu_tech/article/view/299989
https://www.sciencedirect.com/science/article/abs/pii/S0169814117300690
https://ar5iv.labs.arxiv.org/html/1705.11181
https://arxiv.org/abs/2206.08219

ДОДАТКИ

ДОДАТОК А

Клас для роботи з полотном для малювання

Імпортуємо OpenCV для роботи із зображеннями

import cv2

Імпортуємо NumPy для роботи з масивами

import numpy as np

Імпортуємо Matplotlib для візуалізації деяких зображень

from matplotlib import pyplot as plt

Імпортуємо типи для анотації функцій

from typing import List, Dict, Tuple, Set

class DrawingCanvas:

 def __init__(self, width: int, height: int):

 # Створюємо чорне полотно

 self.canvas = np.zeros((width, height, 3), dtype=np.uint8)

 # Координати попередньої точки для малювання лінії

 self.prev_x = None

 self.prev_y = None

 def draw_line(self, x: int, y: int, color: Tuple[int, int,

int] = (255, 255, 255), size: int = 20):

 # Якщо попередні координати існують

 if self.prev_x is not None and self.prev_y is not None:

 # Малюємо лінію

 cv2.line(self.canvas, (self.prev_x, self.prev_y),

(x, y), color, size)

 self.prev_x, self.prev_y = x, y # Оновлюємо попередні ко-

ординати

 def clear(self):

 self.canvas[:] = 0

 def clear_prev(self):

 self.prev_x = None

 self.prev_y = None

 def get_canvas(self) -> np.ndarray:

 return self.canvas

 def get_single_letter(self) -> np.ndarray:

 gray_canvas = cv2.cvtColor(self.canvas,

cv2.COLOR_BGR2GRAY) # Перетворюємо у градації сірого

 resized_canvas = cv2.resize(gray_canvas, (28, 28),

interpolation=cv2.INTER_NEAREST)

 # Змінюємо розмір на 28x28

 flattened_array = resized_canvas.flatten() # Перетворюємо

у 1D масив

 return flattened_array

 def print_data_array(self, flattened_array: np.ndarray):

 s = ','.join(map(str, flattened_array))

 # Готовий масив для подачі у нейромережу

 print(s)

 def get_several_letters(self) -> List[np.ndarray]:

 # Перетворюємо зображення для виділення букв

 gray_canvas = cv2.cvtColor(self.canvas,

cv2.COLOR_BGR2GRAY)

 # Перетворюємо у градації сірого

 ret, thresh = cv2.threshold(gray_canvas, 0, 255,

cv2.THRESH_BINARY)

 # Бінаризація

 img_erode = cv2.erode(thresh, np.ones((3, 3), np.uint8),

iterations=1)

 # Видаляємо шуми

 # Отримуємо контури

 contours, hierarchy = cv2.findContours(img_erode,

cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)

 letters = []

 for idx, contour in enumerate(contours):

 (x, y, w, h) = cv2.boundingRect(contour)

 # Визначаємо координати та розміри букви

 if hierarchy[0][idx][3] == -1:

 # Перевіряємо, чи це зовнішній контур

 letter_crop = gray_canvas[y:y + h, x:x + w]

 # Вирізаємо букву

 size_max = max(w, h)

 # Визначаємо максимальну сторону квадрата

 # Створюємо квадратне зображення букви

 letter_square = 255 * np.ones(shape=[size_max,

size_max], dtype=np.uint8)

 if w > h: # Якщо буква ширша, ніж вища

 y_pos = size_max // 2 - h // 2

 letter_square[y_pos:y_pos + h, 0:w] =

letter_crop

 elif w < h: # Якщо буква вища, ніж ширша

 x_pos = size_max // 2 - w // 2

 letter_square[0:h, x_pos:x_pos + w] =

letter_crop

 else: # Якщо буква квадратна

 letter_square = letter_crop

 # Додаємо букву у список (x-координата + саме зо-

браження)

 letters.append((x, cv2.resize(letter_square, (28,

28), interpolation=cv2.INTER_AREA)))

 # Сортуємо букви за їх позицією на полотні

 letters.sort(key=lambda x: x[0])

 letters_array = [letter[1] for letter in letters]

 # Масив зображень букв (28x28)

 return letters_array

 def show_leters(self, letters_array: List[np.ndarray]):

 fig, axes = plt.subplots(1, len(letters_array),

figsize=(len(letters_array) * 2, 2))

 if len(letters_array) == 1: # Якщо одна буква, перетворю-

ємо axes у список

 axes = [axes]

 # Перебираємо букви

 for ax, letter_img in zip(axes, letters_array):

 # Відображаємо зображення у відтінках сірого

 ax.imshow(letter_img, cmap='gray')

 ax.axis("off") # Видаляємо осі

 plt.show() # Показуємо результат

ДОДАТОК Б

Клас для роботи з нейромережею

import os # Модуль для роботи з операційною системою (файли,

шляхи тощо)

import cv2 # Бібліотека для роботи з комп'ютерним зором

import numpy as np # Бібліотека для роботи з масивами та матри-

цями даних

import pandas as pd # Бібліотека для роботи з даними у форматі

таблиць

import matplotlib.pyplot as plt # Модуль для створення графіків і

візуалізації даних

from PIL import Image, ImageDraw, ImageFilter # Бібліотека для

роботи із зображеннями

Модуль для завантаження та створення нейромережевих моделей

from tensorflow.keras.models import Sequential, load_model # type:

ignore

Шари для згорткових нейромереж

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten,

Dense, Dropout # type: ignore

Функція для перетворення міток у категоріальні значення

from tensorflow.keras.utils import to_categorical # type: ignore

from data.config import train_data_folder, emnist_labels # Шляхи

до даних

Імпортуємо типи для анотації функцій

from typing import List, Tuple

class GestureWriter:

 def __init__(self, training_data_folder: str = None):

 self.model = None # Модель нейромережі (за замовчуванням

None)

 self.get_model(training_data_folder) # Завантажуємо або

навчаємо модель

 # self.test_model(training_data_folder) # Перевірка мо-

делі

 def get_model(self, training_data_folder: str):

 # Шлях до файлу моделі

 model_file =

f"{training_data_folder}\\emnist_cnn_model.h5"

 # Перевіряємо, чи існує збережена модель

 if os.path.exists(model_file):

 print("Завантажуємо раніше навчену модель...")

 self.model = load_model(model_file)

Завантажуємо модель

 else:

 print("Навчаємо нову модель...")

 # Шлях до файлу навчальних даних

 train_file = f"{train_data_folder}

\\emnist-byclass-train.csv"

 # Шлях до файлу тестових даних

 test_file = f"{train_data_folder}

\\emnist-byclass-test.csv"

 model_file = "emnist_cnn_model.h5"

 # Шлях для збереження моделі

 # Завантажуємо дані для навчання

 X_train, y_train = self.load_emnist_data(train_file)

 # Завантажуємо дані для тестування

 X_test, y_test = self.load_emnist_data(test_file)

 num_classes = len(set(y_train)) # Кількість класів

(унікальних міток)

 # Перетворюємо мітки в категоріальні

 y_train_categorical = to_categorical(y_train,

num_classes=num_classes)

 y_test_categorical = to_categorical(y_test,

num_classes=num_classes)

 # Створюємо модель

 self.model = Sequential([

 Conv2D(32, (3, 3), activation='relu',

input_shape=(28, 28, 1)),

 # Перший згортковий шар

 MaxPooling2D((2, 2)),

 # Шар підвибірки

 Conv2D(64, (3, 3), activation='relu'),

 # Другий згортковий шар

 MaxPooling2D((2, 2)),

 # Шар підвибірки

 Flatten(),

 # Перетворюємо дані в одномірний вектор

 Dense(128, activation='relu'),

 # Повнозв'язний шар

 Dropout(0.5),

 # Шар регуляризації (відключення половини нейро-

нів)

 Dense(num_classes, activation='softmax')

 # Вихідний шар з кількістю нейронів = кількості

класів

])

 # Компіляція моделі

 self.model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

 print("Починаємо навчання...")

 # Навчаємо модель

 self.model.fit(X_train, y_train_categorical,

epochs=10, batch_size=128, validation_data=(X_test,

y_test_categorical))

 # Зберігаємо модель

 self.model.save("emnist_cnn_model.h5")

 print(f"Модель збережено у файл {model_file}")

 def test_model(self, training_data_folder: str):

 # Шлях до файлу тестових даних

 test_file = f"{training_data_folder}\\emnist-byclass-

test.csv"

 X_test, y_test = self.load_emnist_data(test_file)

 # Оцінка моделі на тестових даних

 loss, accuracy = self.model.evaluate(X_test, y_test)

 print(f"Тестовий loss: {loss}, Точність: {accuracy}")

 def load_emnist_data(self, data_path: str) ->

Tuple[np.ndarray, np.ndarray]:

 print(f'Завантаження даних із {data_path}...')

 df = pd.read_csv(data_path, header=None) # Читання даних

із CSV-файлу

 y = df.iloc[:, 0].values # Мітки класів (перший стовпець)

 X = df.iloc[:, 1:].values # Решта стовпців — пікселі

 X = X.reshape(-1, 28, 28, 1).astype("float32") / 255.0 #

Нормалізація

 return X, y

 def show_sample_images(self, X: np.ndarray, y: np.ndarray,

number: int, num_samples: int = 5):

 t = 0 # Лічильник виведених зображень

 for i in range(len(X)):

 if y[i] == number: # Якщо мітка зображення збігається

із заданою

 image = X[i].reshape(28, 28).T # Перетворюємо в

28x28 (EMNIST використовує цей розмір)

 plt.imshow(image, cmap='gray') # Відображаємо зо-

браження

 # Заголовок із міткою

 plt.title(f"Тестове зображення, мітка: {y[i]} -

{emnist_labels[y[i]]}")

 plt.show() # Показуємо зображення

 t += 1

 if t == num_samples:

 # Якщо виведено потрібну кількість зображень

 break

 def recognize_letter(self, data: List[int]) -> Tuple[str,

float]:

 # Прогнозуємо мітку для зображення

 prediction =

self.model.predict(self.normalize_image(data))

 predicted_class = np.argmax(prediction)

 # Знаходимо індекс найбільш ймовірного класу

 confidence = np.max(prediction)

 # Впевненість у прогнозі

 return emnist_labels[predicted_class], confidence

 # Повертаємо літеру та впевненість

 def normalize_image(self, data: List[int]) -> np.ndarray:

 image_data = np.array(data)

 # Перетворюємо дані в numpy масив

 image_data = image_data.reshape(28, 28)

 # Перетворюємо в розмір 28x28

 image_data = image_data.astype("float32") / 255.0

 # Нормалізуємо зображення

 image_data = np.expand_dims(image_data, axis=-1)

 # Додаємо розмірність для каналу

 image_data = np.expand_dims(image_data, axis=0)

 # Додаємо розмірність для партії

 return image_data.T

 # Повертаємо транспоноване зображення

 def recognize_letters(self, data: List[List[int]]) ->

Tuple[str, int]:

 s = ''

 for e in data:

 s += self.recognize_letter(e)[0] # Розпізнаємо кожну

букву та додаємо в рядок

 return s, 0 # Повертаємо рядок і 0, щоб відповідь була

схожа на recognize_letter

ДОДАТОК В

Клас для розпізнавання жестів

Бібліотека для роботи із зображеннями та відео

import cv2

Для роботи з масивами

import numpy as np

Бібліотека для комп'ютерного зору, включаючи розпізнавання рук

import mediapipe as mp

Імпортуємо типи для анотації функцій

from typing import List, Dict, Tuple, Set, Optional

class HandTracker:

 def __init__(self, min_detection_confidence: float = 0.8,

min_tracking_confidence: float = 0.8):

 # Використовуємо рішення для розпізнавання рук у MediaPipe

 self.mp_hands = mp.solutions.hands

 self.hands = self.mp_hands.Hands(

 min_detection_confidence=min_detection_confidence,

 min_tracking_confidence=min_tracking_confidence

)

 self.mp_draw = mp.solutions.drawing_utils # Використовуємо

утиліту для малювання на зображеннях

 def get_finger_position(self, frame: np.ndarray) ->

Optional[Tuple[int, int]]:

 h, w, _ = frame.shape

 # Отримуємо розміри зображення

 frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 # Перетворюємо зображення у формат RGB

 results = self.hands.process(frame_rgb)

 if results.multi_hand_landmarks:

 for hand_landmarks in results.multi_hand_landmarks:

 index_finger_tip =

hand_landmarks.landmark[self.mp_hands.HandLandmark.INDEX_FINGER_TI

P]

 x, y = int(index_finger_tip.x * w),

int(index_finger_tip.y * h)

 return x, y

 return None

 def fist_detect(self, frame: np.ndarray) -> bool:

 # Обробляємо зображення для знаходження рук

 results = self.hands.process(cv2.cvtColor(frame,

cv2.COLOR_BGR2RGB))

 if results.multi_hand_landmarks: # Якщо знайдено руки

 for hand_landmarks in results.multi_hand_landmarks:

 # self.mp_draw.draw_landmarks(frame,

hand_landmarks, self.mp_hands.HAND_CONNECTIONS)

 tips = [

 self.mp_hands.HandLandmark.INDEX_FINGER_TIP,

 self.mp_hands.HandLandmark.MIDDLE_FINGER_TIP,

 self.mp_hands.HandLandmark.RING_FINGER_TIP,

 self.mp_hands.HandLandmark.PINKY_TIP

]

 mcps = [

 self.mp_hands.HandLandmark.INDEX_FINGER_MCP,

 self.mp_hands.HandLandmark.MIDDLE_FINGER_MCP,

 self.mp_hands.HandLandmark.RING_FINGER_MCP,

 self.mp_hands.HandLandmark.PINKY_MCP

]

 is_fist = True # Припускаємо, що це кулак

 for tip, mcp in zip(tips, mcps): # Для кожного

пальця перевіряємо, чи його кінчик нижче основи

 if hand_landmarks.landmark[tip].y <

hand_landmarks.landmark[mcp].y:

 is_fist = False # Якщо хоча б одна умова

не виконується, це не кулак

 break

 return is_fist if True else False

 return False

 def is_thumb_up(self, frame: np.ndarray) -> bool:

 # Обробляємо зображення для знаходження рук

 results = self.hands.process(cv2.cvtColor(frame,

cv2.COLOR_BGR2RGB))

 if results.multi_hand_landmarks:

 # Якщо знайдено руки

 for hand_landmarks in results.multi_hand_landmarks:

 # self.mp_draw.draw_landmarks(frame,

hand_landmarks, self.mp_hands.HAND_CONNECTIONS)

 landmarks = hand_landmarks.landmark

 # Отримуємо координати всіх точок на руці

 thumb_tip =

landmarks[self.mp_hands.HandLandmark.THUMB_TIP]

 thumb_cmc =

landmarks[self.mp_hands.HandLandmark.THUMB_CMC]

 index_tip =

landmarks[self.mp_hands.HandLandmark.INDEX_FINGER_TIP]

 index_mcp =

landmarks[self.mp_hands.HandLandmark.INDEX_FINGER_MCP]

 middle_tip =

landmarks[self.mp_hands.HandLandmark.MIDDLE_FINGER_TIP]

 middle_mcp =

landmarks[self.mp_hands.HandLandmark.MIDDLE_FINGER_MCP]

 ring_tip =

landmarks[self.mp_hands.HandLandmark.RING_FINGER_TIP]

 ring_mcp =

landmarks[self.mp_hands.HandLandmark.RING_FINGER_MCP]

 pinky_tip =

landmarks[self.mp_hands.HandLandmark.PINKY_TIP]

 pinky_mcp =

landmarks[self.mp_hands.HandLandmark.PINKY_MCP]

 # Перевіряємо, чи великий палець вище його основи

 thumb_up = thumb_tip.y < thumb_cmc.y

 # Перевіряємо, чи інші пальці зігнуті

 fingers_folded = (

 index_tip.y > index_mcp.y

 and middle_tip.y > middle_mcp.y

 and ring_tip.y > ring_mcp.y

 and pinky_tip.y > pinky_mcp.y

)

 if thumb_up and fingers_folded:

 return True

 return False

 return False

 def write_text_on_canvas(self, frame: np.ndarray, text: str,

x: int, y: int):

 cv2.putText(frame, text, (x, y), cv2.FONT_HERSHEY_SIMPLEX,

 2, (0, 255, 0), 2, cv2.LINE_AA)

ДОДАТОК Г

Головний клас логіки програми

import cv2 # Імпорт бібліотеки OpenCV для обробки зображень та

відео

from logic.workWithHand.GestureWriter import GestureWriter # Ім-

порт класу для розпізнавання тексту нейромережею

from logic.workWithHand.HandTracker import HandTracker # Імпорт

класу для відстеження положення рук

from logic.canva.DrawingCanvas import DrawingCanvas # Імпорт

класу для малювання на полотні

from data.config import train_data_folder # Імпорт шляхів до фай-

лів конфігурації

class AirWritingApp:

 def __init__(self):

 self.cap = cv2.VideoCapture(0) # Відкриття відеопотоку з

камери за замовчуванням

 self.tracker = HandTracker() # Ініціалізація трекера рук

 self.canvas = None # Змінна для полотна, на якому буде

малюватися

 self.writer = GestureWriter(train_data_folder) # Ініціа-

лізація розпізнавача жестів

 self.is_write = True # Прапор для включення/виключення

режиму малювання

 def set_is_write(self, value: bool):

 self.is_write = value

 def generate_frames(self):

 while True:

 ret, frame = self.cap.read() # Читання кадру з відео-

потоку

 if not ret: # Якщо кадр не отримано, виходимо

 break

 frame = cv2.flip(frame, 1) # Дзеркальне відображення

зображення по горизонталі

 h, w, _ = frame.shape # Отримуємо розміри кадру

 if self.canvas is None: # Якщо полотно ще не ство-

рено, створюємо його

 self.canvas = DrawingCanvas(400, 400)

 if (not self.tracker.fist_detect(frame)) and

self.is_write: # Якщо кулак не виявлений і малювання увімкнене

 finger_pos =

self.tracker.get_finger_position(frame) # Отримуємо координати

вказівного пальця

 if finger_pos:

 # Якщо координати пальця знайдені

 x, y = finger_pos

 # Витягуємо координати

 self.canvas.draw_line(x, y)

 # Малюємо лінію на полотні по координатах

 else:

 self.canvas.clear_prev()

Якщо кулак виявлений, очищуємо попередні координати

 canvas_img = self.canvas.get_canvas()

 # Отримуємо зображення полотна

 # Перевіряємо кількість каналів (уникаємо помилки

OpenCV)

 if len(canvas_img.shape) == 2: # Якщо зображення по-

лотна в градаціях сірого (1 канал)

 canvas_bgr = cv2.cvtColor(canvas_img,

cv2.COLOR_GRAY2BGR) # Перетворюємо в 3 канали (кольорове зобра-

ження)

 else:

 canvas_bgr = canvas_img # Якщо зображення вже ко-

льорове, просто використовуємо його

 # Розміри полотна

 ch, cw, _ = canvas_bgr.shape

 x_offset = (w - cw) // 2

 y_offset = (h - ch) // 2

 # Вставляємо полотно по центру

 frame[y_offset:y_offset + ch, x_offset:x_offset + cw]

= canvas_bgr

 # Код для відправки зображення у вигляді потоку

 _, buffer = cv2.imencode('.jpg', frame) # Кодуємо

кадр у формат JPEG

 frame_bytes = buffer.tobytes() # Перетворюємо в байти

для відправки по мережі

 yield (b'--frame\r\n'

 b'Content-Type: image/jpeg\r\n\r\n' +

frame_bytes + b'\r\n') # Відправка кадру як частини HTTP-

відповіді

ДОДАТОК Ґ

Допоміжні функції

from logic.AirWritingApp import AirWritingApp # Імпорт основного

класу програми для малювання в повітрі

Імпорт бібліотек Flask для створення веб-додатку

from flask import Flask, Response, jsonify, render_template,

request

Ініціалізація Flask додатку

app = Flask(__name__, template_folder="../templates",

static_folder="../static")

Створюємо екземпляр додатку для малювання в повітрі

app_instance = AirWritingApp()

@app.route('/')

def index() -> str:

 return render_template('index.html')

 # Відображення головної сторінки за допомогою шаблону

@app.route('/video_feed')

def video_feed() -> Response:

 # Генерація кадрів і передача їх як відеопотоку

 return Response(app_instance.generate_frames(),

mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/clear_canvas', methods=['POST'])

def clear_canvas() -> str:

 app_instance.canvas.clear() # Очищаємо полотно

 return '', 204 # Повертаємо порожню відповідь

@app.route('/get_letter', methods=['POST'])

def get_letter() -> str:

 # Виводимо розпізнану букву в консоль

print(app_instance.writer.recognize_letter(app_instance.canvas.get

_single_letter()))

 return '', 204 # Повертаємо порожню відповідь

@app.route('/set_is_write', methods=['POST'])

def set_is_write() -> str:

 is_write = request.get_json().get('is_write', False) # Отри-

муємо значення прапора з JSON запиту

 app_instance.set_is_write(is_write) # Встановлюємо прапор ма-

лювання

 return '', 204

@app.route('/get_letters', methods=['POST'])

def get_letters() -> Response:

 if app_instance.canvas is None:

 return jsonify({'error': 'Canvas is not initialized'}),

500 # Повертаємо помилку, якщо полотно не ініціалізовано

 # Отримуємо результат розпізнавання однієї букви

 result, confidence =

app_instance.writer.recognize_letter(app_instance.canvas.get_singl

e_letter())

 # Отримуємо результат розпізнавання кількох букв

result, confidence =

app_instance.writer.recognize_letters(app_instance.canvas.get_seve

ral_letters())

 return jsonify({'letter': str(result), 'confidence':

float(confidence)}) # Повертаємо JSON з результатом

Декларація щодо унікальності текстів роботи

та невикористання матеріалів інших авторів без посилань

ДЕКЛАРАЦІЯ

про дотримання академічної доброчесності

Я, __

__

Повністю вказується ПІБ та статус (посада для працівників, освітня (освітньо-наукова) програма – для здобувачів вищої освіти)

що нижче підписалась/підписався, розуміючи та підтримуючи

загальновизнані засади справедливості, доброчесності та законності,

ЗОБОВ’ЯЗУЮСЬ:

дотримуватися принципів та правил академічної доброчесності, що

визначені законодавством України, локальними нормативними актами

Донецького національного університету імені Василя Стуса, положеннями,

правилами, умовами, визначеними іншими суб’єктами, та не допускати їх

порушення.

ПІДТВЕРДЖУЮ:

що мені відомі положення статті 42 Закону України «Про освіту»;

що у даній роботі не представляла/представляв чиїсь роботи повністю

або частково як свої власні. Там, де я скористалася/скористався працею інших,

я зробила/зробив відповідні посилання на джерела інформації;

що дана робота не передавалась іншим особам і подається вперше, не

порушує авторських та суміжних прав закріплених статтями 21-25 Закону

України «Про авторське право та суміжні права», а дані та інформація не

отримувались в недозволений спосіб.

УСВІДОМЛЮЮ:

що ця робота може бути перевірена університетом на плагіат або інші

порушення академічної доброчесності, в тому числі з використанням

спеціалізованих сервісів;

що у разі порушення академічної доброчесності, до мене можуть бути

застосовані процедури, передбачені законодавством України та Кодексом

академічної доброчесності та корпоративної етики Донецького національного

університету імені Василя Стуса, іншими локальними нормативними актами

університету, та я можу бути притягнута/притягнутий до академічної

відповідальності.

________________ ___________________
(дата) (підпис)

