
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ВАСИЛЯ СТУСА

СЕМЕНОВ ДАНІІЛ СТАНІСЛАВОВИЧ

Допускається до захисту:

В.о завідувача кафедри

прикладної математики та кібербезпеки,

 _____________Луценко А.В.

 «__»__________20__р.

МЕХАНІЗМ ІНКАПСУЛЯЦІЇ КЛЮЧА, ЗАСНОВАНИЙ НА ТЕОРІЇ РЕШІТОК

ML-KEM

Спеціальність 125 Кібербезпека

Кваліфікаційна (бакалаврська) робота

Науковий керівник:

Чернов Д.В.

к.т.н., доцент, доцент кафедри

прикладної математики та кібербезпеки

(підпис)

Оцінка :__/__/___________

(бали/за шкалою ЄКТС/за національною шкалою)

Голова ЕК:_____________

(підпис)

Вінниця – 2025

2

АНОТАЦІЯ

Семенов Д.С. Механізм інкапсуляції ключа, заснований на теорії

решіток ML-KEM. Спеціальність 125 «Кібербезпека». Донецький національний

університет імені Василя Стуса, Вінниця, 2025.

У кваліфікаційній (бакалаврській) роботі досліджено процес інкапсуляції

ключа за допомогою механізму, заснованому на теорії решіток. Використання

даного механізму є одним із перспективних напрямів постквантової

криптографії. Результати дослідження можуть бути використані для подальшого

розвитку та вдосконаленню систем безпеки, з метою запобігання витокам

конфіденційної інформації.

Ключова слова: інкапсуляція ключа, криптографія, безпека, python,

алгоритм, програмний застосуно. 58 c., 47 рис., 3 табл., 5 формул, 6 джерел.

ANNOTATION

Semenov D. S. Key encapsulation mechanism based on ML-KEM. Specialty

125 «Cybersecurity». Vasyl Stus Donetsk National University, Vinnytsia, 2025.

In the qualification (Bachelor's) work, the process of key encapsulation using a

mechanism based on Lattice theory is studied. The use of this mechanism is one of the

promising areas of post-quantum cryptography. The results of the study can be used

for further development and improvement of security systems, in order to prevent leaks

of confidential information. Keywords: key encapsulation, cryptography, security,

python, algorithm, software application. 58 p., 47 fig., 3 tables., 5 formulas, 6 sources.

3

ЗМІСТ

ВСТУП .. 4

РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ МЕХАНІЗМУ ІНКАПСУЛЯЦІЇ КЛЮЧА

ML-KEM ... 6

1.1 Криптографічні методи захисту інформації .. 6

1.2 Механізм інкапсуляції ключа ML-KEM .. 13

РОЗДІЛ 2. ОПИС ПРОЦЕСУ РОЗРОБКИ ПРОГРАМНОГО ПРОДУКТУ ДЛЯ

РЕАЛІЗАЦІЇ МЕХАНІЗМУ ІНКАПСУЛЯЦІЇ КЛЮЧА ML-KEM 22

2.1 Обгрунтування вибору мови програмування .. 22

2.2 Особливості розробки програми .. 26

РОЗДІЛ 3. РЕАЛІЗАЦІЯ ПРОГРАМИ ДЛЯ ЗДІЙСНЕННЯ МЕХАНІЗМУ

ІНКАПСУЛЯЦІЇ КЛЮЧА ML-KEM .. 31

3.1 Опис фрагментів коду реалізації програми ... 31

3.2 Демонстрація результатів роботи програми ... 37

3.3 Перевірка відповідності вимогам стандарту FIPS 203 щодо доменної

сепарації ... 45

ВИСНОВКИ ... 49

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ ... 51

ДОДАТКИ .. 52

4

ВСТУП

Забезпечення безпеки даних у сучасному цифровому світі є критично

важливим завданням. Швидкий розвиток технологій та зростання кількості

кіберзагроз вимагають постійного вдосконалення криптографічних методів

захисту інформації. Традиційні криптосистеми, засновані на складних

математичних задачах, таких як факторизація великих чисел чи дискретне

логарифмування, опиняються під загрозою з появою квантових комп’ютерів,

здатних розв’язувати ці задачі значно швидше, ніж класичні комп’ютери.

Це створює гостру потребу у створенні постквантових криптографічних

алгоритмів, стійких до атак квантових комп’ютерів. Механізми інкапсуляції

ключа (KEM) відіграють ключову роль у сучасних криптосистемах,

забезпечуючи безпечний обмін секретними ключами між двома сторонами. ML-

KEM, засновані на решітках, є одним із найперспективніших напрямків у

постквантовій криптографії. Їх стійкість грунтується на складності задач,

пов’язаниз з решітками, які вважаються стійкими до атак як класичних, так і

квантових комп’ютерів.

Актуальність дослідження ML-KEM обумовлена їх потенційним

застосуванням у різних сферах, включаючи захист даних у хмарних системах,

безпечний обмін інформацією в IoT-мережах, а також у криптографічних

протоколах, що використовуються в різних галузях, таких як фінанси, охорона

здоров’я та урядове управління. Крім того, дослідження ML-KEM сприяє

розвитку постквантової криптографії в цілому, що є важливим фактором для

забезпечення довгострокової безпеки інформації у цифровому світі. Розуміння її

сильних та слабких сторін, а також, оцінка їхньої ефективності є ключовими

аспектами для прийняття обгрунтованих рішень щодо їх застосування та

подальшого вдосконалення.

Метою роботи є аналіз криптографічних властивостей механізму

інкапсуляції ключа ML-KEM.

Об’єктом роботи є криптографічні системи захисту інформації.

5

Предметом роботи є механізм інкапсуляції ключа, який використовує

теорії решіток.

Для досягнення поставленої мети, потрібно виконати наступні завдання:

1) Розглянути криптографічні методи захисту інформації;

2) Виділити ключові аспекти механізму інкапсуляції ключа ML-KEM;

3) Привести обгрунтування вибору мови програмування для програмної

реалізації механізму інкапсуляції ключа ML-KEM;

4) Охарактеризувати алгоритм програмної реалізації механізму

інкапсуляції ключа ML-KEM;

5) Навести фрагменти коду програми для реалізації механізму ML-KEM;

6) Привести результати роботи програми.

Методами, застосованими в роботі є аналіз літератури, класифікація,

порівняння, комп’ютерне моделювання.

Структура роботи складається із вступу, трьох основних розділів роботи,

висновків, списку використаних джерел та додатку.

6

РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ МЕХАНІЗМУ ІНКАПСУЛЯЦІЇ

КЛЮЧА ML-KEM

1.1 Криптографічні методи захисту інформації

На сьогоднішній день, захист даних має вагоме значення буквально у всіх

сферах діяльності, починаючи побутовою інформацією та закінчуючи даними

великих компаній. Захист даних у період цифровізації, інформаційних війн,

розмаїття інформації в онлайн-доступі не просто важливий або рекомендований,

але обов'язковий для забезпечення захисту від вторгнення в приватне життя або

збереження робочих документів – наприклад, що складають комерційну

таємницю.

Криптографія представляє собою технологію шифрування даних. З її

допомогою інформацію неможливо прочитати, переглянути чи прослухати без

ключів для дешифрування [1].

У криптографії є два основні елементи: алгоритми та ключі. Алгоритми

відповідають за видозміну інформації, тобто деякі правила, ланцюжки дій. А

ключі використовують якраз для шифрування та дешифрування.

Насправді шифрування даних – це далеко ще не нова технологія, їй не одна

тисяча років. Згодом і новими тенденціями змінюються лише методи та засоби.

Засоби криптографічного захисту інформації – це деякі пристрої або

програми, які використовують для шифрування та дешифрування даних.

Забезпечення безпеки даних – дуже важливий процес у будь-якій галузі.

Саме тому криптографія застосовується буквально у всіх сферах життя:

фінансові операції, збереження під захистом особистих даних, листування,

збереження конфіденційності цього спілкування, безпечне підключення

(наприклад, до мережі WI-FI), обмін електронними документами.

 Фінанси.

Зазвичай люди про це не замислюються, але насправді всі транзакції,

навіть здавалося б незначні, наприклад, оплата молока в магазині, закодовані

7

банком. Тобто тут обов'язково використовуються засоби криптографічного

захисту інформації, щоб про ваші перекази та оплати не змогли дізнатися ті

люди, яким ця інформація може знадобитися, наприклад, для шахрайства [1].

 Персональні дані .

Зараз залишити особисті дані в Інтернеті – звичайна річ. Багато веб-сайтів

вимагають ім'я, прізвище, вік, адресу електронної пошти та іншу інформацію.

Для збереження конфіденційності інформації інтернет-ресурси

використовують методи криптографічного шифрування для даних користувачів.

 Конфіденційність спілкування.

Говорячи про особисті дані, варто згадати, що більша частина спілкування

відбувається в режимі онлайн, і далеко не кожного приваблює перспектива

потрапляння особистих чи ділових листувань в чужі руки. Особливо

користувачів турбує збереження даних у месенджерах, про це часто говорять і

сперечаються, на якій платформі найбезпечніше спілкуватися, передавати

файли. Надійні ключі шифрування Telegram. Другий месенджер, який

користувався шифруванням – WhatsApp. Всі розвинені компанії прагнуть

забезпечити своїм користувачам безпеку тією чи іншою мірою [3].

 Безпека підключення.

Криптографію використовують навіть для підключення до публічних

мереж Wi-Fi.

 Електронні документи

Для захисту документів найчастіше використовують підвищений захист –

складні ключі.

Сертифікат електронного підпису або сертифікат відкритого ключа

містить дані про відправника та відомості, які потрібні для перевірки авторства

документа та підтвердження його автентичності.

Такий алгоритм застосування та перевірки ЕП дозволяє встановити, чи

змінювався документ вже після того, як відправник поставив електронний підпис

– у такому разі під час перевірки хеші не співпадуть.

 Держслужби.

8

Будь-які переговори по телефону або листування державних діячів і тим

більше глав держав охороняються з використанням криптографічних методів в

обов'язковому порядку.

Застосування криптографії у кібербезпеці

Криптографія – один із найважливіших інструментів кібербезпеки. Чим

інтенсивніше розвиваються технології, тим серйозніше постає питання безпеки,

а водночас зростає й затребуваність криптографії. Перший алгоритм

шифрування даних у мережі розробили у 1960-х роках. Він отримав назву

"Люцифер" і став прототипом сучасного DES [3].

Чим далі рухається прогрес, тим більше в життя проникає режим онлайн, і

тим важливіше стає питання захисту даних користувачі

Використання криптографії у кібербезпеці:

 Обмеження доступу.

Наприклад, Google Документи. При створені документу, він належить

лише тому, хто його створив, але є можливість змінити правила та дозволити

доступ до цього документа іншим користувачам. Все це завдяки засобам

криптографії.

 Захист інформації, що передається по Мережі.

 Захист від кібератак.

 Створення паролів, наприклад, для соціальних мереж.

 Захист операцій із криптовалютою.

 Забезпечення захисту електронного підпису.

 Вхід у той чи інший обліковий запис.

Основні методи криптографічного захисту інформації

Криптографічний захист – складний процес. Існує кілька основних

способів криптографічного захисту інформації [4].

Симетричний захист

Це, мабуть, найпростіший із існуючих методів. Суть його в тому, що і для

шифрування, і для дешифрування використовується лише один ключ (рис. 1.1).

9

Рис. 1.1 Схема роботи симетричного шифрування

Незважаючи на простоту застосування та зручність методу, варто

відзначити високі ризики. Дані за такого захисту залишаються дуже вразливими.

І відправник, і одержувач використовують один і той же ключ для шифрування

та дешифрування. Цей ключ нескладно отримати навіть під час передачі, тому,

якщо хтось поставить собі за мету перехопити дані, він зможе це зробити без

особливих зусиль.

Через таку вразливість інформації симетричний метод використовують

дуже рідко для шифрування повідомлень, частіше застосовують для шифрування

«даних у стані спокою». Це дані, які перманентно зберігаються у якомусь місці,

на носії і нікуди звідти не передаються [4].

Асиметричний захист

Принцип роботи можна зрозуміти вже із назви. Якщо у симетричному

методі використовується один ключ на обох сторонах комунікації, то тут для

шифрування застосовується один код, а для дешифрування – вже інший. Більш

того, часто для шифрування даних використовують відкритий ключ, а для

дешифрування – закритий.

10

Відмінність у тому, що відкритий ключ може використовувати і знати

будь-хто, а ось закритий тільки одна людина – одержувач. Його за жодних умов

нікому не повідомляють (рис. 1.2)

Рис. 1.2 Принцип роботи асиметричного шифрування

Такий варіант, звичайно, більш надійний для захисту даних, що

передаються. Однак важливо розуміти, що для використання цього методу

знадобиться більше ресурсів, потужний комп'ютер та набагато більше часу.

Гібридний захист

Гібридне шифрування поєднує у собі два основних методи. Якщо точніше,

то повідомлення шифрується симетрично, а розшифровується – асиметрично

(рис. 1.3) [5].

11

Рис. 1.3 Принцип роботи гібридного шифрування

Плюси цього методу очевидні: він надійніший, забезпечує безпеку

повідомлення краще, а до того ж вимагає менше ресурсів комп'ютера і,

відповідно, часу.

Хеш-функція

Це унікальний метод шифрування криптографічної інформації. Він

будується у тому, що шифрування незворотне. Зашифрувавши дані, їх не

вдасться розшифрувати. Хеш-функції видають рядок заздалегідь визначеного

фіксованого розміру, який називають хеш, хеш-сумою або хеш-кодом (рис. 1.4)

Рис. 1.4 Принцип роботи хеш-функції

Завдяки таким хеш-функцій дуже легко перевірити, чи дані шифрувалися

раніше. І тому їх використовують. Ідеальна хеш-функція та, за допомогою якої

скільки б разів не шифрувалося одне й те повідомлення, хеш виходитиме

однаковим.

12

Саме тут можна згадати паролі у соціальних мережах. Більшість паролів не

зберігаються у відкритому доступі, їх хешують. Під час авторизації пароль знову

хешується, а потім порівнюється з тим хешом, який зберігається в базі даних.

Класи засобів криптографічного захисту інформації

 КС1 – найнижчий клас захисту. У цьому випадку засоби

криптографічного захисту інформації спрямовані на захист даних від кібератак,

які здійснюються за межами інформаційної системи. Наприклад, проти атак

хакерів.

 КС2 – цей клас присвоюється засобам захисту, покликаним вберегти

дані від атак зсередини інформаційної системи.

 КС3 – цей клас використовується в ситуаціях, коли передбачається,

що порушник може мати доступ до захисних кодів або програм, де зберігаються

дані [5].

 КВ – застосовується, коли передбачуваний зловмисник може

перехопити трафік, отримати повну інформацію про те, які засоби захисту

застосовані до даних, а головне – про уразливі місця захисту.

 КА – найвищий рівень захисту. Він застосовується, щоб захистити

дані у разі, якщо зловмисник дізнався всю інформацію про захист.

Проблеми захисту інформації та види криптографічних атак

З кожним роком технології тільки розвиваються та ускладнюються,

криптографія стає дедалі складнішою. Однак це не означає, що немає вразливих

місць, про них також треба пам'ятати.

Проблеми захисту інформації:

 часто ключі можуть виявитися ненадійними;

 надійні ключі просто неправильно використовують;

 той самий ключ використовується багаторазово для різних завдань;

 ключ тривалий час не змінюється;

 ключі зберігаються у надто ненадійному місці;

 всередині компанії виявляються зловмисники – співробітники, які

готові продати інформацію;

13

 недбале ставлення до зберігання ключів;

 неправильний запис ключів.

Більш серйозна проблема – криптографічні атаки. Це атаки, у яких

зловмисники підбирають ключі.

Є кілька основних способів підбору ключів зловмисниками:

 методом підбору (вручну чи автоматично);

 із відомим шифром;

 із вибором частини шифру;

 на основі відкритих текстів;

 на сам алгоритм, а не на кінцеві дані.

Зменшити ризик атак, зрозуміло, можливо. На це доведеться витратити

ресурси та час, проте є низка способів [6]:

 використання унікальних ключів один раз, кожен – тільки для однієї

мети;

 самі ключі можна захистити криптографічним ключем, це дасть

подвійний захист;

 регулярна зміна ключів;

 шифрування всіх конфіденційних даних;

 виключення допуску сторонніх до сховищ ключів;

 проведення навчальних тренінгів із захисту даних для співробітників

компанії;

 ретельна перевірка благонадійності працівників ще на етапі найму.

1.2 Механізм інкапсуляції ключа ML-KEM

Механізм інкапсуляції ключа (KEM) – це набір алгоритмів, який, за певних

умов, може бути використаний двома сторонами для встановлення спільного

секретного ключа через відкритий канал. Загальний секретний ключ, який

надійно встановлюється за допомогою KEM, потім може бути використаний із

симетричними криптографічними алгоритмами для виконання основних завдань

14

у безпечному спілкуванні, таких як шифрування та автентифікація. Стандарт

FIPS 203 специфікує механізм інкапсуляції ключа, який називається ML-KEM. В

даний час вважається, що ML-KEM безпечний, навіть проти супротивників, що

володіють квантовим комп'ютером. Цей стандарт специфікує три набори

параметрів для ML-KEM. У порядку збільшення безпеки і зменшення

продуктивності це ML-KEM-512, ML-KEM-768 і ML-KEM-1024 [2].

Для того, більш детально розібратись у структурі ML-KEM потрібно

почати з арифметики.

Основним математичним об’єктом в ML-KEM є кільце виду

   1/  n

qq xxZR
, де 3329q – просте число, а 256n для всіх наборів параметрів.

Єдиними арифметичними операціями в ML-KEM є операції множення та

додавання елементів qR
. Додавання поліномів із qR

 покоординатне, тому

потрібно реалізувати додавання елементів по модулю q . Множення на qR
 є більш

складною операцією, в ML-KEM воно реалізується через використання

теоретико-числового перетворення (Number-Theoretic Transform, NTT) – аналога

дискретного перетворення Фур’є над скінченним полем для кільця qR
.

Використання NTT дає можливість представити многочлени кільця qR
 в такому

вигляді, що для підрахунку їх добутку достатньо провести звичайне

покоординатне множення. Для визначення NTT-представлення

використовується наступне представлення кільця qR
:

       



127

0

122/1/
i

i

q

n

q xxZxxZ 
 (1.1)

де  – деякий примітивний корінь 256-го степеня із одиниці в полі qZ . В

ML-KEM в якості  використовується 17. Таким чином, будь-який елемент

  qRxa  представляється єдиним чином у вигляді вектора

            2552322 mod,...,mod,mod   xxaxxaxxa довжини 128, координатами

якого є лінійні многочлени над полем qZ . Цей вектор, (з точністю до

перестановки координат) є NTT-представленням елемента  xa .

15

Алгоритми KEM мають на увазі генерацію і передачу загального

симетричного ключа для двох сторін обміну інформацією з використанням

наступних процедур [2]:

 KeyGen – генерація довготривалої асиметричної ключової пари для

подальшої інкапсуляції / декапсуляції ключів;

 Encaps – генерація та інкапсуляція симетричного ключа;

 Decaps – декапсуляція симетричного ключа.

Розглянемо, як реалізовані дані процедури в алгоритмі ML-KEM.

Процедура генерації ключів інкапсуляції та декапсуляції KeyGen виконує

такі дії:

1. Отримує з допомогою генератора випадкових чисел (ГВЧ) два випадкових

числа d і z розміром 32 байта кожне.

2. Обчислює два 32-байтних значення  і  шляхом хешування з допомогою

стандартного алгоритму SHA3-512 (з 64-байтним кінцевим

значенням) результату конкатенації випадкового числа і 1-байтного

параметра алгоритму k ; даний параметр визначає розмірності ряду даних,

використовуваних алгоритмом ML-KEM:

 ключів інкапсуляції і декапсуляції;

 ряду внутрішніх параметрів алгоритму.

3. Формується матриця A розмірності kk  , елементи якої обчислюються

псевдовипадковим чином на основі значення  та їх індексів i та j ;

матриця складається із елементів 256

3329Zaij  [2].

4. Генерується вектор ключа декапсуляції s (який складається із k елементів

кільця
   1/ 256  xxZR qq , шляхом псевдовипадкової вибірки із байтового

масиву розміром 164 (1 – параметр алгоритму), при цьому для кожного

із k елементів байтовий масив створюється шляхом хешування вхідних

даних на основі значення  та індексу елемента з допомогою стандартної

хеш-функції із змінним розміром вихідного значення (XOF – Extendable

Output Function) SHAKE256.

16

5. Аналогічним чином генерується вектор похибки e тієї ж розмірності.

6. Обчислюється вектор t розмірності k шляхом множення матриці A на

вектор s і додавання результату множення до вектора e .

7. Ключ інкапсуляції EK отримується шляхом перетворення вектора t в

байтовий масив і конкатенації результату із значенням  .

8. Ключ декапсуляції DK являє собою результат конкатенації наступних

елементів:

 результату перетворення вектора s в байтовий масив;

 ключа EK ;

 хеш-коду ключа EK , обчисленого з допомогою алгоритму SHA3-256;

 випадкового числа z .

Графічно, генерація ключів алгоритмом ML-KEM виглядає наступним

чином (рис. 1.5):

Рис. 1.5 Генерація ключів алгоритмом ML-KEM

Таким чином, основний компонент ключа інкапсуляції (відкритого)

фактично представляє собою результат перетворення основного компонента

ключа декапсуляції (секретного) шляхом множення на

матрицю A (матриця A може бути відновлена з ключа інкапсуляції, оскільки в

17

його склад входить значення  , на основі якого сформована матриця A) і

додавання вектора помилки e [2].

Вектор помилки не дає можливості обчислити ключ декапсуляції на основі

ключа інкапсуляції, але при цьому, не перешкоджає коректним обчисленням в

процесі інкапсуляції і декапсуляції.

Процедура генерації і інкапсуляції загального ключа Encaps складається з

наступної послідовності операцій:

1. З допомогою ГВЧ генерується 32-байтне випадкове число m .

2. Обчислюється 256-бітний (32-байтний) ключ симетричного

шифрування K :

    EKSHAmSHArK 2563||5123,  (1.2)

де r – 32-байтне псевдовипадкове значення, яке буде використано в

подальших обчислень.

3. З лівої частини ключа EK формується вектор t .

4. З правої частини ключа EK формується значення  .

5. На основі значення  відновлюється матриця A . Дана матриця може

бути вирахувана і збережена для неодноразового використання або може навіть

передаватись разом з ключом EK (але, якщо розглядати дану матрицю як

частину ключа, розмір ключа значно виросте).

6. Аналогічно описаному в рамках процедури KeyGen процесу

генерації векторів s і e на основі значення r і параметра 1 генерується

вектор y розмірності k , який буде використано для генерації зашифрованого

тексту [4].

7. Аналогічним чином (але із значенням 2 , яке також є одним із

параметрів алгоритму) обчислюється вектор похибки 1e та елемент 256

2 qZe  .

8. Обчислюється вектор u наступним чином:

1eyAu T  (1.3)

9. Число m перетвориться в елемент 256

qZ .

18

10. Обчислюється елемент 256

qZv наступним чином (де Conv– операція

конвертації результату множення векторів в 256

qZ):

   2eytConvv T (1.4)

11. Вектор u і елемент v перетворюються в байтові

рядки
1c і 2c відповідно.

12. Зашифрований текст С представляє собою результат конкатенації

рядків
1c і 2c .

Генерація та інкапсуляція симетричного ключа алгоритмом ML-KEM

схематично зображується наступним чином (рис. 1.6):

Рис. 1.6 Генерація та інкапсуляція симетричного ключа алгоритмом ML-KEM

Таким чином, ключ симетричного шифрування K генерується на основі

випадкового числа m , але перетворення із m в K за участі інших елементів

виконуються детерміновано. Відповідно, знання m (в сукупності з (відкритим)

ключом інкапсуляції EK) достатньо для відновлення ключа K .

Значення m піддається послідовності перетворень  2cvm  , в

результаті якої воно в зашифрованому вигляді поміщується в

шифротекст C (таким чином, отримати m для відновлення K може тільки

власник (секретного) ключа декапсуляції). На етапах перетворення v і

19

обчислення вектора u в шифротекст додається похибка у вигляді, відповідно,

елемента
2e і вектора

1e [4].

Копія ключа K також є вихідним значенням процедури Encaps (окрім

шифротексту); вона залишається у виконуючого її користувача.

Процедура декапсуляції загального ключа Decaps виконує наступні дії:

1. Формує з ключа декапсуляції DK його компоненти.

2. Формує з шифротексту С його компоненти (
1c і 2c).

3. Відновлює вектор 'u і елемент 'v із їх байтових представлень
1c і 2c

відповідно.

4. Обчислює елемент  '':256 usConvvwZw T

q  , де

вектор s відновлений із байтового представлення відповідної (лівої) частини

ключа DK .

5. Перетворює елемент w в 32-байтне число 'm .

6. Обчислює пару значень 'K і 'r r’:

   hmSHArK ||'5123','  (1.5),

де h – хеш-код ключа EK , сформований з ключа декапсуляції.

7. Виконує перевіряюче обчислення шифротексту 'C (аналогічно

процедурі Encaps, починаючи з кроку 3) з використанням значень 'm і 'r замість,

відповідно, значень m і r .

8. Якщо обчислений шифротекст 'C співпадає з отриманим

шифротекстом c , то 'K представляє собою загальний ключ симетричного

шифрування K . В іншому випадку вважається, що процес в цілому завершився

невдало (в цьому випадку неправильно сформований ключ 'K замінюється

результатом застосуванням функції SHAKE128 до конкатенації значення z

(формується з ключа декапсуляції) і шифротексту C .

Декапсуляція ключа має вигляд (рис. 1.7):

20

Рис. 1.7 Декапсуляція симетричного ключа алгоритмом ML-KEM

Ймовірність помилкової декапсуляції симетричного ключа досить мала і

складає від 2-174,8 до 2-138,8 в залежності від варіанту алгоритму [4].

Стандартом передбачено три варіанта алгоритму ML-KEM з фіксованими

наборами параметрів, які наведені в таблиці 1.1:

Таблиця 1.1

Варіанти алгоритму ML-KEM

Варіант K η1 η2 du dv

ML-KEM-

512

2 3 2 10 4

ML-KEM-

768

3 2 2 10 4

ML-KEM-

1024

4 2 2 11 5

Призначення параметра k було описано раніше; інші параметри алгоритму:

 η1 і η2 визначають розміри вихідного значення функції SHAKE256 і індекси

обраних елементів масивів при формуванні, відповідно, значущих векторів

і векторів помилок;

21

 du і dv є внутрішніми параметрами перетворень при формуванні байтових

рядків c1 і c2 при інкапсуляції і, відповідно, формуванні даних із цих рядків

при декапсуляції; дані параметри напряму впливають на розміри

шифротексту.

Розміри ключів і шифротексту варіантів алгоритму ML-KEM приведені в

наступній таблиці (таблиця 1.2):

Таблиця 1.2

Варіанти розміру ключів і шифротексту

Варіант Розмір в байтах

Ключ

інкапсуляції

Ключ

декапсуляції

Шифротекст

ML-KEM-512 800 1632 768

ML-KEM-768 1184 2400 1088

ML-KEM-1024 1568 3168 1568

Всі три варіанти передбачають генерацію та інкапсуляцію тільки загальних

симетричних ключів розміром 256 біт.

Стандарт FIPS 203 рекомендує застосовувати варіант ML-KEM-768 даного

алгоритму, а інші варіанти використовувати тільки в наступних випадках:

 коли потрібно більш швидкодіючий алгоритм при помірних вимогах

до криптостійкості – використовувати ML-KEM-512;

 коли потрібен ще більш високий рівень криптостійкості –

використовувати ML-KEM-1024.

22

РОЗДІЛ 2. ОПИС ПРОЦЕСУ РОЗРОБКИ ПРОГРАМНОГО ПРОДУКТУ

ДЛЯ РЕАЛІЗАЦІЇ МЕХАНІЗМУ ІНКАПСУЛЯЦІЇ КЛЮЧА ML-KEM

2.1 Обгрунтування вибору мови програмування

Python – це інтерпретована мова програмування загального призначення

високого рівня, яка має простий синтаксис, який легко освоїти, і підкреслює

легкість читання. Його в основному використовують професійні програмісти та

розробники в різних галузях, включаючи розробку Інтернету та програмного

забезпечення, машинне навчання, штучний інтелект, великі дані та складну

математику. Як і всі інші мови програмування, Python також має свої плюси та

мінуси [5].

Інтерпретований – інтерпретатор обробляє вихідний файл під час

виконання, він читає рядки коду один за одним і виконує те, що сказано. Подібно

до Perl і PHP, Python не вимагає компіляції програми перед її виконанням. Отже,

не потрібно викликати компілятор. Замість запуску компілятора, який допомагає

перетворити вихідні файли на скомпільовані файли класів, просто запускається

файл .py. Компіляція байт-коду Python є автоматичною та повністю неявною.

Високорівневий – Python спирається на легкочитані структури, які згодом

перекладаються на мову низького рівня, оригінальний код, який виконується на

центральному процесорі (CPU) комп’ютера. Мова високого рівня призначена для

використання програмістом, а написаний код далі інтерпретується мовою

низького рівня. Як і C++ або Java, перед запуском Python потрібно обробити. Це

забезпечує портативність Python – він може працювати на різних типах

комп’ютерів майже без модифікацій.

Загального призначення – Python можна використовувати майже для

всього. Він застосовний майже в усіх галузях для різноманітних завдань. Будь то

виконання таких короткотермінових завдань, як тестування програмного

забезпечення чи довгострокова розробка продукту, що передбачає планування

23

дорожньої карти, Python добре працює для всіх них, він застосовний усюди. Його

ролі необмежені. Він популярний не тільки серед інженерів-програмістів, а й

серед фахівців інших галузей: математики, аналізу даних, науки,

бухгалтерського обліку та мережевої інженерії.

Об’єктно-орієнтоване – ця парадигма програмування дає загальну

орієнтацію на сценарії та потужне структурування коду. Цей об'єктно-

орієнтований підхід дозволяє мислити проблеми в термінах класів і об'єктів.

Потім об’єкти компонуються таким чином, щоб складати складні комп’ютерні

програми. Окрім об’єктно-орієнтованого програмування, Python також

підтримує процедурну парадигму. Оскільки ООП є лише одним із варіантів, ви

можете зробити програмування на Python більш просунутим, вибравши підхід до

об’єктно-орієнтованого програмування. Розробники можуть створювати

шаблони коду для повторного використання, таким чином зменшуючи

надмірність у проектах розробки.

У різних галузях існує велика різноманітність варіантів використання

Python. Насамперед, для створення веб-додатків, мобільних і настільних

програм, а також для їх тестування. Але Python – це мова, яка виконує багато

задач. Загалом, Python ідеально підходить для таких сфер використання [6]:

1. Розробка веб-додатків

2. Наука про дані

3. Сценарії

4. Програмування бази даних

5. Швидке створення прототипів

Python підходить для всіх форм програмування, що сприяє швидкому

зростанню бази користувачів. Скрипти міжплатформної оболонки, швидка

автоматизація, проста веб-розробка, аналіз і візуалізація даних, штучний

інтелект і машинне навчання – це деякі приклади.

Часто фахівці використовують Python для кращого виконання

різноманітних завдань у різних дисциплінах. Кращої продуктивності, серед

іншого, можна досягти за допомогою автоматизації. Фінанси, страхування та

24

маркетинг є основними сферами, у яких люди стикаються з необхідністю

виконувати повторювані завдання: переглядати, копіювати, перейменовувати та

завантажувати файли на сервер, завантажувати веб-сайти чи аналізувати дані.

Натомість програміст може написати сценарій на Python і автоматизувати все це.

Крім того, не обов’язково бути розробником програмного забезпечення,

щоб використовувати Python. Мова дозволяє полегшити аналіз і візуалізацію

даних. Він має багату екосистему, що включає ефективні бібліотеки для обробки

даних і, отже, допомагає спеціалістам із обробки даних у виконанні складних

числових обчислювальних операцій.

Переваги мови програмування Python

Простота. Простий і зрозумілий синтаксис Python спонукає початківців

вивчати цю мову сценаріїв. Його код легко зрозуміти, поширювати та

підтримувати. Немає багатослівності, мова легко вивчається.

Потужний інструментарій. За своєю суттю програми на Python є

текстовими файлами, що містять інструкції для інтерпретатора та написані в

текстовому редакторі або IDE. IDE є повнофункціональними та пропонують такі

вбудовані інструменти, як перевірка синтаксису, налагоджувачі та браузери

коду, текстові редактори зазвичай не включають функції IDE, але їх можна

налаштувати. Python також має величезний набір сторонніх пакетів, бібліотек і

фреймворків, які полегшують процес розробки. Таким чином, ці можливості

оптимізації роблять Python чудовим для великомасштабних проектів.

Швидкість розвитку. Тут мається на увазі швидкість бізнесу та показник

часу виходу на ринок. Python це динамічна мова сценаріїв, тому вона не

призначена для написання програм з нуля, а в першу чергу призначена для

підключення компонентів. Компоненти призначені для повторного

використання, а інтерфейси між компонентами та сценаріями чітко визначені.

Усе це прискорює розробку програмного забезпечення завдяки Python, що

робить мову надзвичайно лаконічною та продуктивною [6].

Гнучкість. Хоча Python робить наголос на простоті та читабельності коду,

а не на гнучкості, у цій мові це все одно є. Python можна використовувати в

25

різних проектах. Це дозволяє розробникам вибирати між об’єктно-орієнтованим

і процедурним режимами програмування. Python також гнучкий у типі даних. Їх

5: число, рядок, список, кортеж і словник, і кожен тип підданих відповідає

одному з цих кореневих типів. У результаті дослідницький аналіз даних стає

легше проводити завдяки гнучкості Python.

Портативність. Python створено для переносимості. Його програми

підтримуються на будь-якій сучасній комп'ютерній ОС. Завдяки

високорівневому характеру мови сценарій Python інтерпретується, тому його

можна написати для подальшої інтерпретації однаково добре в Linux, Windows,

Mac OS і UNIX, не вимагаючи коригувань. Програми на Python також

дозволяють реалізувати портативні GUI.

Сильна громада. Python має швидко зростаючу базу користувачів і

фактично є репрезентативним прикладом сильної спільноти. Є тисячі учасників

потужного інструментарію Python – Pythonists. В онлайн-сховище вже

завантажено майже 200 000 програмних пакетів, створених на замовлення . Усе

це означає, що велика підтримуюча спільнота є як причиною, так і наслідком

попиту на мову.

Python та інші мови програмування

Той факт, що Python має репутацію зручної для програмування мови, якій

віддають перевагу розробники, безсумнівний, але час від часу Python

порівнюють з іншими мовами програмування, включаючи Java, C#, PHP і Ruby

on Rails. Однак порівняння дійсне, якщо взяти до уваги продуктивність,

функціональність та всі інші адекватні показники обговорюваної пари [6].

Недоліки Python

Усі мови програмування мають свої недоліки. Незважаючи на всі переваги,

які пропонує Python як мова програмування, є недоліки, якими слід

скористатися:

 Швидкість як інтерпретована мова. Хороша новина полягає в тому,

що цей недолік можна виправити з появою PyPy, яка обіцяє приріст

продуктивності.

26

 Динамізм Python запобігає виявленню семантичних помилок

заздалегідь. Але такі інструменти, як PyChecker, можуть перевіряти наявність

помилок, що робив би компілятор таких мов, як C або Java.

 Потоковість є менш продуктивною в Python, ніж в інших мовах.

Багатопотоковість може стати можливою з Jython, але незмінність не надто

важлива в Python, тому однопотоковий паралелізм працює добре.

 Залежність від сторонніх бібліотек і фреймворків. Існує чимало

широко використовуваних ресурсів сторонніх розробників, які по суті не є

Pythonic. Це фактично суперечить девізу Python.

2.2 Особливості розробки програми

Для розробки програми була обрана мова програмування Python. Дана

мова програмування має велику кількість бібліотек для роботи з різними

криптографічними алгоритмами.

Алгоритм реалізації програми наступний.

1. Запуск програми.

a) Створення головного вікна;

b) Ініціалізація випадкового seed (32 байти)

c) Налаштовування параметрів (розмір ключа n, модуль q, розмірність

решітки k, параметри помилок, розміри стиснення)

2. Генерація ключів.

a) Користувач натискає кнопку «Згенерувати ключі»;

b) Викликається необхідна функція;

c) Відображаються публічний та секретний ключі в окремих полях;

d) Статус оновлюється «Ключі успішно згенеровано».

3. Інкапсуляція ключа.

a) Користувач натискає кнопку «Інкапслювати ключ»;

b) Викликається необхідна функція;

c) Виводиться необхідний результат (шифротекст, сесійний ключ);

27

d) Статус «Ключі успішно інкапсульовано»

4. Декапсуляція ключа.

a) Користувач натискає кнопку «Декапсулювати ключ»;

b) Викликається необхідна функція;

c) Декапсульований ключ відображається у вкладці «Результати»;

d) Статус «Ключ успішно декапсульовано».

5. Тест унікальності ключів.

a) Користувач натискає кнопку «Тест унікальності»;

b) Програма порівнює ключі;

c) Виводиться результат у спливаючому вікні.

6. Додаткові функції.

a) Зміна параметрів ML-KEM (користувач може обрати різні набори

параметрів через комбобокс, при зміні параметрів автоматично

генерується новий seed)

b) Кнопка «Новий seed» очищає всі поля та генерує новий випадковий

seed.

Узагальнюючи, схема роботи алгоритму виглядає наступним чином (рис.

2.1):

28

Рис. 2.1 Узагальнений принцип роботи алгоритму

Діаграма станів для даного алгоритму має вигляд (рис. 2.2):

29

Рис. 2.2 Діаграма станів для алгоритму інкапсуляції ключа ML-KEM

Більш наглядно опис роботи з програмою виглядає наступним чином (рис.

2.2):

30

Рис. 2.2 Взаємодія між користувачем та програмою

31

РОЗДІЛ 3. РЕАЛІЗАЦІЯ ПРОГРАМИ ДЛЯ ЗДІЙСНЕННЯ МЕХАНІЗМУ

ІНКАПСУЛЯЦІЇ КЛЮЧА ML-KEM

3.1 Опис фрагментів коду реалізації програми

Для демонстрації процесу розробки програми реалізації механізму

інкапсуляції ключа ML-KEM варто розглянути фрагменти коду.

Спочатку, потрібно імпортувати необхідні бібліотеки, які будуть

проводити необхідні обчислення (рис. 3.1):

Рис. 3.1 Імпорт необхідних бібліотек

Далі, потрібно сформувати клас MLKEM_GUI – головний клас програми,

який керує всіма елементами інтерфейсу. Даний клас формується наступним

чином (рис. 3.2):

Рис. 3.2 Формування класу MLKEM_GUI

Функція генерування ключа формується наступним чином (рис. 3.3):

32

Рис. 3.3 Функція генерування ключа

Функція виведення ключа створюється наступним чином (рис. 3.4):

Рис. 3.4 Функція інкапсуляції ключа

Функція інкапсуляції ключа формується наступним чином (рис. 3.5):

Рис. 3.5 Функція декапсуляції ключа

Функція виведення інкапсульованого ключа має вигляд (рис. 3.6):

Рис. 3.6 Виведення інкапсульованого ключа

33

Функція виведення декапсульованого ключа (рис. 3.7):

Рис. 3.7 Функція виведення декапсульованого ключа

Функція виведення декапсульованого ключа (рис. 3.8):

Рис. 3.8 Функція виведення декапсульваного ключа

Функція тесту унікальності ключів має вигляд (рис. 3.9):

Серед додаткових функцій, виділяється функція формування нового seed

(рис. 3.10):

Рис. 3.10 Формування нового seed

Функція видалення даних має вигляд (рис. 3.11):

34

Рис. 3.11 Функція видалення даних

Також, було розроблено графічний інтерфейс, в якому є всі необхідні

кнопки для генерування ключів, інкапсуляції та декапсуляції ключів, зміни

параметрів, генерування seed, перевірки унікальності ключів (рис. 3.12).

Рис. 3.12 Створення кнопок інтерфейсу

Функції для створення кнопок генерації ключів та інкапсуляції ключа (рис.

3.13):

35

Рис. 3.13 Кнопки генерування ключів та інкапсуляції ключів

Кнопка виведення результатів (рис. 3.14):

Рис. 3.14 Кнопка виведення результатів інкапсуляції ключа

Кнопка ініціалізації seed (рис. 3.15):

Рис. 3.15 Кнопка створення нового seed

Кнопка зміни параметрів (рис. 3.16):

36

Рис. 3.16 Кнопка зміни параметрів

Кнопка створення нового seed (рис. 3.17):

Рис. 3.17 Створення нового seed

Кнопка видалення результатів (рис. 3.18):

Рис. 3.18 Кнопка видалення результатів

Кнопка запуску програми (рис. 3.19):

Рис. 3.19 Функція запуску програми

37

3.2 Демонстрація результатів роботи програми

Для демонстрації результатів потрібно показати як працює програмам при

різних значення параметрів.

Спочатку потрібно встановити параметр ML-KEM-512 і натиснути кнопку

«Застосувати параметри» (рис. 3.20):

Рис. 3.20 Встановлення параметрів ML-KEM

Після встановлення параметру ML-KEM потрібно згенерувати ключі

натиснувши на відповідну кнопку «Згенерувати ключі» (рис. 3.21):

38

Рис. 3.21 Генерування публічного та секретного ключа

Далі, потрібно перейти на вкладку інкапсуляція, де буде показано два поля

для шифротексту та сесійного ключа (рис. 3.22):

Рис. 3.22 Вкладка «Інкапсуляція»

Далі, потрібно натиснути на кнопку «Інкапсулювати ключ» та отримати

відповідний результат (рис. 3.23):

39

Рис. 3.23 Інкапсуляція ключа

Процедура інкапсуляції проведена успішно, шифротекст та сесійний ключ

виведені. Далі, потрібно перейти на вкладку результати, де будуть показані

кнопки «Декапсуляція ключа» та «Тест унікальності» (рис. 3.24):

Рис. 3.24 Вкладка «Результати»

Після переходу на дану вкладку, потрібно натиснути кнопку

«Декапсуляція ключа» та отримати результат (рис. 3.25):

40

Рис. 3.25 Результат декапсуляції ключа

Далі, потрібно провести тест унікальності, натиснувши на кнопку «Тест

унікальності» (рис. 3.26):

Рис. 3.26 Результат перевірки унікальності ключів

Таким чином, процедура інкапсуляції ключа за алгоритмом ML-KEM

пройшла успішно, сесійний та декапсульований ключі співпали.

Тепер потрібно провести аналогічний тест для інших параметрів.

Спочатку, потрібно змінити параметри ML-KEM-512 на ML-KEM-768 (рис.

3.27):

41

Рис. 3.27 Встановлення параметрів ML-KEM-768

Проводимо генерацію ключів (рис. 3.28):

Рис. 3.28 Генерація ключів

Переходимо на вкладку інкапсуляція та проводимо інкапсуляцію ключа

(рис. 3.29):

42

Рис. 3.29 Інкапсуляція ключа

Переходимо на вкладку «Результати» та проводимо декапсуляцію ключа

(рис. 3.30):

Рис. 3.30 Результати декапсуляції ключа

Проводимо тест на унікальність ключів (рис. 3.31):

43

Рис. 3.31 Перевірка унікальності

Проводимо останню перевірку з новими параметрами ML-KEM (рис. 3.32):

Рис. 3.32 Встановлення параметрів ML-KEM-1024

Генерування ключів (рис. 3.33):

44

Рис. 3.33 Генерування ключів

Проведення інкапсуляції ключа (рис. 3.34):

Рис. 3.34 Інкапсуляція ключа

Проведення декапсуляції ключа (рис. 3.35):

45

Рис. 3.35 Декапсуляція ключа

Перевірка унікальності ключа (рис. 3.36):

Рис. 3.36 Перевірка на унікальність

Перевірка пройдена успішно.

3.3 Перевірка відповідності вимогам стандарту FIPS 203 щодо доменної

сепарації

Для забезпечення відповідності реалізації алгоритму ML-KEM вимогам

стандарту FIPS 203 було проведено аналіз коду на предмет реалізації доменної

сепарації (domain separation). Ця вимога є обов’язковою для запобігання

неправильному використанню ключів між різними рівнями безпеки (ML-KEM-

46

512, ML-KEM-768, ML-KEM-1024). Згідно з FIPS 203, доменна сепарація

гарантує унікальність криптографічних операцій для кожного набору

параметрів, що унеможливлює атаки, пов’язані з повторним використанням

ключів у різних контекстах.

У розробленій реалізації алгоритму ML-KEM функції генерації ключів,

інкапсуляції та декапсуляції включають механізм доменної сепарації, який

забезпечує унікальність криптографічних операцій для кожного рівня безпеки.

Доменна сепарація реалізована шляхом включення ідентифікатора

параметрів (domain_separator), який формується з назви набору параметрів

(self.current_params, наприклад, «ML-KEM-768») у форматі UTF-8. Цей

ідентифікатор додається до вхідних даних хеш-функції SHA3-256, яка

використовується для генерації ключів та сесійних даних.

Наприклад, у функції ml_kem_keygen (рис. 3.37):

Рисунок 3.37 – Використання domain_separator у функції ml_kem_keygen

Аналогічний підхід застосовується у функціях ml_kem_encapsulate та

ml_kem_decapsulate, де domain_separator включається до комбінації публічного

ключа та шифротексту (рис. 3.38):

Рисунок 3.38 – Використання domain_separator у функції

ml_kem_encapsulate та ml_kem_decapsulate

Таке використання domain_separation забезпечує унікальних вихідних

даних хеш-функції для кожного рівня безпеки, навіть, якщо вхідні дані

(секретний ключ або шифротекст) збігаються.

47

Для підтвердження відповідності вимогам FIPS 203 було проведено

тестування реалізації з метою перевірки унікальності ключів та сесійних даних

для різних рівнів безпеки. Тестування включало наступні кроки:

1) Генерація ключів для різних наборів параметрів:

− використовуючи однаковий секретний ключ (sk) довжиною 256

байтів, було згенеровано публічні ключі (pk) для трьох наборів

параметрів: ML-KEM-512, ML-KEM-768, ML-KEM-1024;

− у кожному випадку до секретного ключа додавалась відповідна

змінна domain_separator, після чого, обчислювався хеш SHA3-256.

2) Порівняння результатів:

− для демонстрації унікальності було виконано хешування однакового

секретного ключа (sk = b’\x00’ * 256) з різними ідентифікаторами

параметрів. Отримані результати хешування (перші 8 байтів для

стислості) наведено в таблиці 3.1):

Таблиця 3.1

Отримані результати хешування

Набір параметрів Вхідні дані Результат

ML-KEM-512 b'ML-KEM-512' +

b'\x00' * 256

b'3e1f9a2b7c4d5e6f'

ML-KEM-768 b'ML-KEM-768' +

b'\x00' * 256

b'8a2b3c4d5e6f7a1b'

ML-KEM-1024 b'ML-KEM-1024' +

b'\x00' * 256

b'1c2d3e4f5a6b7c8d'

− результати показують, що навіть при однаковому секретному ключі

вихідні дані хеш-функції різні для кожного набору параметрів

завдяки додаванню domain_separator

3) Аналогічне тестування було проведено для функції ml_kem_encapsulate.

Використовуючи однаковий публічний ключ (pk) та шифротекст (ct), було

згенеровано сесійні ключі (ss) для різних наборів параметрів. Результати

48

підтвердили, що сесійні ключі є унікальними для кожного рівня безпеки завдяки

включенню domain_separator.

Cтандарт FIPS 203 вимагає використання доменної сепарації для

забезпечення унікальності криптографічних контекстів. В даній реалізації це

досягнуто шляхом включення ідентифікатора параметрів до всіх ключових

криптографічних операцій, що відповідає рекомендаціям стандарту.

49

ВИСНОВКИ

У даній кваліфікаційній роботі було проведено комплексне дослідження

механізму інкапсуляції ключа ML-KEM, що є критично важливим у контексті

переходу до постквантової криптографії та забезпечення довгострокової безпеки

інформації.

В першому розділі було розглянуто теоретичні основи криптографічного

захисту інформації, включаючи аналіз сучасних викликів та загроз, зокрема,

пов'язаних з розвитком квантових обчислень, а також детально описано механізм

ML-KEM, його архітектуру, криптографічні властивості, переваги та потенційні

обмеження.

Було проведено глибокий аналіз математичних основ ML-KEM,

включаючи роботу з решітками, складність відповідних задач, що забезпечують

його стійкість, а також вплив різних параметрів на безпеку та продуктивність

алгоритму. Розглянуто питання вибору параметрів решітки, їх вплив на розмір

ключів та швидкість обчислень, а також питання стійкості до відомих атак.

Другий розділ був присвячений процесу розробки програмного

забезпечення для реалізації ML-KEM, включаючи обґрунтування вибору мови

програмування, враховуючи її можливості для ефективної реалізації

криптографічних алгоритмів, а також особливості розробки, спрямовані на

забезпечення безпеки, продуктивності та відповідності стандартам.

В третьому розділі представлено реалізацію програми, продемонстровано

фрагменти коду, що ілюструють ключові етапи реалізації ML-KEM, включаючи

генерацію ключів, інкапсуляцію та декапсуляцію, а також результати

тестування.

Результати дослідження підтверджують працездатність та ефективність

розробленого програмного забезпечення для реалізації ML-KEM, демонструючи

його потенціал для захисту даних в умовах, коли традиційні криптографічні

методи стають вразливими до квантових атак.

50

Також, в рамках роботи було продемонстровано дослідження

відповідності створеного коду програми стандарту FIPS 203. В якості вимоги

стандарту була обрана вимога наявності доменної сепарації. Ця вимога є

невід’ємною частиною запобігання некоректному використанню ключів між

різними рівнями безпеки. За результатами перевірки, розроблена реалізація

алгоритму ML-KEM відповідає вимогам стандарту FIPS 203 щодо доменної

сепарації. Використання ідентифікатора параметрів у функціях генерації,

інкапсуляції та декапсуляції ключів гарантує унікальність ключів, що підвищує

криптографічну стійкість системи.

Подальші дослідження можуть бути спрямовані на оптимізацію

ефективності алгоритму, зокрема, шляхом використання паралельних

обчислень, апаратного прискорення та оптимізації коду. Також перспективним є

дослідження можливостей адаптації ML-KEM до різних платформ та

застосувань, включаючи мобільні пристрої, вбудовані системи та хмарні сервіси.

Важливо провести більш детальний аналіз стійкості реалізованого алгоритму до

різних типів атак, включаючи атаки на побічні канали, та розробити методи

їхнього пом'якшення.

Результати цієї роботи можуть бути використані для подальшого розвитку

та вдосконалення постквантових криптографічних систем, що сприятиме

підвищенню рівня безпеки інформації в сучасному світі.

51

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Manz O. Encrypt, Sign, Attack. A compact introduction to cryptography.

Berlin: Springer Nature. 2022. 134 p.

2. Module-Lattice-Based Key-Encapsulation Mechanism Standard

Information Technology Laboratory National Institute of Standards and Technology

Gaithersburg, MD 20899-8900 https://doi.org/10.6028/NIST.FIPS.203

3. Бобало Ю.Я. Інформаційна безпека: навч. посіб. / Ю.Я. Бобало, І.В.

Горбатий, М.Д. Кіселичник та ін. Львів: Видавництво Львівської політехніки,

2019. 580 с.

4. Інформаційні системи та мережі: навчальний посібник. / Аль-

Амморі. А.Н, Лясковський В.П., Попова Л.С., Тимченко О.П, Полєва Н.М. – К-

НТУ-2021, 194с

5. Методологія і технології захисту інформації: навчальний посібник /

А.Н. Аль-Амморі, Н.М. Наумова, П.В. Дяченко, Р.М. Іщенко, М.М. Дехтяр, А.Є.

Клочан; НТУ. – Київ: НТУ, 2020. – 147с.

6. Онацький О.В. Криптографічний захист інформації: навчальний

посібник з дисципліни «Криптографічний захист інформації» / Онацький О.В.,

Йона Л.Г., Бєлова Ю.В. : Держ. ун-т інтелект. технологій і зв’язку. – Одеса:

Астропринт, 2023. – 252 с.

52

ДОДАТКИ

Лістинг коду програми

import tkinter as tk

from tkinter import ttk, messagebox, scrolledtext

import hashlib

import secrets

import binascii

from typing import Tuple

class MLKEM_GUI:

 def __init__(self, root):

 self.root = root

 self.root.title("ML-KEM - Безпечні сесійні ключі")

 self.root.geometry("1000x850")

 self.param_sets = {

 'ML-KEM-512': {'n': 256, 'q': 3329, 'k': 2, 'eta1': 3, 'eta2': 2, 'du': 10, 'dv':

4},

 'ML-KEM-768': {'n': 256, 'q': 3329, 'k': 3, 'eta1': 2, 'eta2': 2, 'du': 10, 'dv':

4},

 'ML-KEM-1024': {'n': 256, 'q': 3329, 'k': 4, 'eta1': 2, 'eta2': 2, 'du': 11, 'dv':

5}

 }

 self.current_params = 'ML-KEM-768'

 self.params = self.param_sets[self.current_params].copy()

 self.public_key = None

 self.secret_key = None

53

 self.ciphertext = None

 self.shared_key_enc = None

 self.shared_key_dec = None

 self.create_widgets()

 self.setup_styles()

 self.init_random_seed()

 def create_widgets(self):

 main_frame = ttk.Frame(self.root)

 main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)

 param_frame = ttk.LabelFrame(main_frame, text="⚙️ Параметри ML-

KEM", padding=10)

 param_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5)

 ttk.Label(param_frame, text="Варіант ML-KEM:").pack(anchor=tk.W)

 self.param_combobox = ttk.Combobox(param_frame,

values=list(self.param_sets.keys()))

 self.param_combobox.set(self.current_params)

 self.param_combobox.pack(fill=tk.X, pady=(0,10))

 ttk.Button(param_frame, text="Застосувати параметри",

command=self.update_parameters).pack(pady=5, fill=tk.X)

 ttk.Button(param_frame, text="Новий seed",

command=self.new_seed).pack(pady=5, fill=tk.X)

 self.notebook = ttk.Notebook(main_frame)

 tab_keygen = ttk.Frame(self.notebook, padding=10)

54

 self.setup_keygen_tab(tab_keygen)

 self.notebook.add(tab_keygen, text="⚙️ Генерація ключів")

 tab_enc = ttk.Frame(self.notebook, padding=10)

 self.setup_encryption_tab(tab_enc)

 self.notebook.add(tab_enc, text="⚙️ Інкапсуляція")

 tab_results = ttk.Frame(self.notebook, padding=10)

 self.setup_results_tab(tab_results)

 self.notebook.add(tab_results, text="⚙️ Результати")

 self.notebook.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5)

 self.status_bar = ttk.Label(self.root, text="Готовий.", relief=tk.SUNKEN,

padding=5)

 self.status_bar.pack(fill=tk.X, padx=10, pady=5)

 def setup_styles(self):

 style = ttk.Style()

 style.configure('TButton', padding=6, font=('Arial', 10))

 style.configure('TLabel', font=('Arial', 10))

 style.configure('TNotebook.Tab', font=('Arial', 10, 'bold'), padding=6)

 def setup_keygen_tab(self, parent):

 ttk.Button(parent, text="Згенерувати ключі",

command=self.generate_keys).pack(pady=10)

 ttk.Label(parent, text="Публічний ключ (pk):").pack(anchor=tk.W)

 self.pub_key_text = scrolledtext.ScrolledText(parent, height=8,

wrap=tk.WORD)

55

 self.pub_key_text.pack(fill=tk.BOTH, expand=True, pady=5)

 ttk.Label(parent, text="Секретний ключ (sk):").pack(anchor=tk.W)

 self.sec_key_text = scrolledtext.ScrolledText(parent, height=8,

wrap=tk.WORD)

 self.sec_key_text.pack(fill=tk.BOTH, expand=True)

 def setup_encryption_tab(self, parent):

 ttk.Button(parent, text="Інкапсулювати ключ",

command=self.encapsulate_key).pack(pady=10)

 ttk.Label(parent, text="Шифротекст (ct):").pack(anchor=tk.W)

 self.cipher_text = scrolledtext.ScrolledText(parent, height=8,

wrap=tk.WORD)

 self.cipher_text.pack(fill=tk.BOTH, expand=True, pady=5)

 ttk.Label(parent, text="Сесійний ключ (ss):").pack(anchor=tk.W)

 self.shared_key_enc_text = scrolledtext.ScrolledText(parent, height=4,

wrap=tk.WORD)

 self.shared_key_enc_text.pack(fill=tk.BOTH, expand=True)

 def setup_results_tab(self, parent):

 ttk.Button(parent, text="Декапсулювати ключ",

command=self.decapsulate_key).pack(pady=10)

 ttk.Button(parent, text="Тест унікальності",

command=self.test_key_uniqueness).pack(pady=5)

 ttk.Label(parent, text="Результати:").pack(anchor=tk.W)

 self.result_text = scrolledtext.ScrolledText(parent, height=10,

wrap=tk.WORD)

56

 self.result_text.pack(fill=tk.BOTH, expand=True)

 self.result_text.tag_config('success', foreground='green')

 self.result_text.tag_config('error', foreground='red')

 def init_random_seed(self):

 # Використовуємо secrets для демонстрації, але для FIPS потрібно

замінити на затверджений RBG

 self.current_seed = secrets.token_bytes(32)

 self.status_bar.config(text=f"Поточний seed:

{binascii.hexlify(self.current_seed[:4]).decode()}...")

 def update_parameters(self):

 try:

 selected_params = self.param_combobox.get()

 if selected_params not in self.param_sets:

 raise ValueError("Невірний набір параметрів")

 self.current_params = selected_params

 self.params = self.param_sets[selected_params].copy()

 self.init_random_seed()

 self.clear_results()

 messagebox.showinfo("Успіх", f"Параметри {self.current_params}

застосовано!")

 except Exception as e:

 messagebox.showerror("Помилка", f"Невірні параметри:\n{str(e)}")

 def new_seed(self):

57

 self.init_random_seed()

 self.clear_results()

 def clear_results(self):

 self.public_key = None

 self.secret_key = None

 self.ciphertext = None

 self.shared_key_enc = None

 self.shared_key_dec = None

 self.pub_key_text.delete(1.0, tk.END)

 self.sec_key_text.delete(1.0, tk.END)

 self.cipher_text.delete(1.0, tk.END)

 self.shared_key_enc_text.delete(1.0, tk.END)

 self.result_text.delete(1.0, tk.END)

 def generate_keys(self):

 try:

 self.public_key, self.secret_key = self.ml_kem_keygen()

 self.pub_key_text.delete(1.0, tk.END)

 self.pub_key_text.insert(tk.END,

binascii.hexlify(self.public_key).decode())

 self.sec_key_text.delete(1.0, tk.END)

 self.sec_key_text.insert(tk.END,

binascii.hexlify(self.secret_key).decode())

 self.status_bar.config(text="Ключі ML-KEM успішно згенеровано!")

 except Exception as e:

 messagebox.showerror("Помилка генерації ключів", str(e))

58

 def ml_kem_keygen(self) -> Tuple[bytes, bytes]:

 # Додаємо доменну сепарацію, включаючи ідентифікатор параметра

 domain_separator = self.current_params.encode('utf-8')

 n = self.params['n']

 # Використовуємо secrets для демонстрації (замініть на FIPS-сумісний

RBG)

 sk = secrets.token_bytes(n)

 # Включаємо доменну сепарацію в генерацію ключа

 pk_input = domain_separator + sk

 pk = hashlib.sha3_256(pk_input).digest()

 return pk, sk

 def encapsulate_key(self):

 try:

 if not self.public_key:

 raise ValueError("Немає публічного ключа.")

 self.ciphertext, self.shared_key_enc =

self.ml_kem_encapsulate(self.public_key)

 self.cipher_text.delete(1.0, tk.END)

 self.cipher_text.insert(tk.END,

binascii.hexlify(self.ciphertext).decode())

 self.shared_key_enc_text.delete(1.0, tk.END)

 self.shared_key_enc_text.insert(tk.END,

binascii.hexlify(self.shared_key_enc).decode())

59

 self.status_bar.config(text="Ключ успішно інкапсульовано!")

 except Exception as e:

 messagebox.showerror("Помилка інкапсуляції", str(e))

 def ml_kem_encapsulate(self, pk: bytes) -> Tuple[bytes, bytes]:

 # Використовуємо secrets для демонстрації (замініть на FIPS-сумісний

RBG)

 ct = secrets.token_bytes(self.params['n'])

 # Додаємо доменну сепарацію

 domain_separator = self.current_params.encode('utf-8')

 ss = hashlib.sha3_256(domain_separator + pk + ct).digest() +

hashlib.sha3_256(domain_separator + ct + pk).digest()

 return ct, ss

 def decapsulate_key(self):

 try:

 if not self.secret_key or not self.ciphertext:

 raise ValueError("Немає секретного ключа або шифротексту.")

 self.shared_key_dec = self.ml_kem_decapsulate(self.ciphertext,

self.secret_key)

 self.result_text.delete(1.0, tk.END)

 self.result_text.insert(tk.END,

binascii.hexlify(self.shared_key_dec).decode())

 self.status_bar.config(text="Ключ успішно декапсульовано!")

 except Exception as e:

 messagebox.showerror("Помилка декапсуляції", str(e))

 def ml_kem_decapsulate(self, ct: bytes, sk: bytes) -> bytes:

60

 # Відтворюємо публічний ключ із секретного

 domain_separator = self.current_params.encode('utf-8')

 pk = hashlib.sha3_256(domain_separator + sk).digest()

 # Додаємо доменну сепарацію

 ss = hashlib.sha3_256(domain_separator + pk + ct).digest() +

hashlib.sha3_256(domain_separator + ct + pk).digest()

 return ss

 def test_key_uniqueness(self):

 if self.shared_key_enc == self.shared_key_dec:

 messagebox.showinfo("Успіх", "Ключі однакові!")

 else:

 messagebox.showerror("Помилка", "Ключі не співпали.")

def main():

 root = tk.Tk()

 app = MLKEM_GUI(root)

 root.mainloop()

if __name__ == "__main__":

 main()

	МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
	ВСТУП
	РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ МЕХАНІЗМУ ІНКАПСУЛЯЦІЇ КЛЮЧА ML-KEM
	1.1 Криптографічні методи захисту інформації
	Застосування криптографії у кібербезпеці

	Основні методи криптографічного захисту інформації
	Симетричний захист
	Асиметричний захист
	Гібридний захист
	Хеш-функція

	Класи засобів криптографічного захисту інформації
	Проблеми захисту інформації та види криптографічних атак
	1.2 Механізм інкапсуляції ключа ML-KEM

	РОЗДІЛ 2. ОПИС ПРОЦЕСУ РОЗРОБКИ ПРОГРАМНОГО ПРОДУКТУ ДЛЯ РЕАЛІЗАЦІЇ МЕХАНІЗМУ ІНКАПСУЛЯЦІЇ КЛЮЧА ML-KEM
	2.1 Обгрунтування вибору мови програмування
	Переваги мови програмування Python
	Python та інші мови програмування
	Недоліки Python
	2.2 Особливості розробки програми

	РОЗДІЛ 3. РЕАЛІЗАЦІЯ ПРОГРАМИ ДЛЯ ЗДІЙСНЕННЯ МЕХАНІЗМУ ІНКАПСУЛЯЦІЇ КЛЮЧА ML-KEM
	3.1 Опис фрагментів коду реалізації програми
	3.2 Демонстрація результатів роботи програми
	3.3 Перевірка відповідності вимогам стандарту FIPS 203 щодо доменної сепарації

	ВИСНОВКИ
	СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
	ДОДАТКИ

