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АНОТАЦІЯ 

Гнатишин А. О. Виявлення та кількісне визначення щільності продихів у 

листках Carpinus betulus L. із застосуванням методів глибокого навчання. 

Спеціальність 101 «Екологія», Освітня програма «Екологія». Донецький 

національний університет імені Василя Стуса, Вінниця, 2025. 

У бакалаврській роботі досліджується щільність продихів у листках 

Carpinus betulus L. з використанням методів глибокого навчання. Описується 

процес збору зразків листя, створення мікроскопічних зображень, анотації 

даних та навчання згорткової нейронної мережі RetinaNet з основою YOLOv8 

для автоматичного виявлення продихів. Проводиться статистичний аналіз 

отриманих результатів для визначення щільності продихів. 

Ключові слова: продихи, листки, Carpinus betulus L., щільність продихів, 

глибоке навчання, згорткові нейронні мережі, RetinaNet, YOLOv8. 

37 с., 1 табл., 11 рис., 15 джерел. 

 

ABSTRACT 

Hnatyshyn A. O. Detection and Quantification of Stomatal Density in Carpinus 

betulus Leaves Using Deep Learning Techniques. Specialty 101 "Ecology", 

Educational program "Ecology". Vasyl Stus Donetsk National University, 

Vinnytsia, 2025. 

This bachelor's thesis investigates the density of stomata in the leaves of 

Carpinus betulus L. using deep learning methods. The process includes collecting 

leaf samples, creating microscopic images, annotating the data, and training the 

RetinaNet convolutional neural network with a YOLOv8 backbone for automatic 

stomata detection. Statistical analysis of the obtained results is performed to 

determine the stomata density. 

Keywords: stomata, leaves, Carpinus betulus L., stomata density, deep 

learning, convolutional neural networks, RetinaNet, YOLOv8. 

37 р., 1 tabl., 11 Fig., 15 Bibliography items.   
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ВСТУП 

 

Дослідження щільності та розподілу продихів на листках рослин є 

важливим аспектом екологічних та фізіологічних досліджень, оскільки 

продихи відіграють ключову роль у регуляції газообміну та транспірації, які 

залежать від екологічних факторів, таких як забруднення та кліматичні зміни. 

Автоматизоване визначення кількості продихів за допомогою сучасних 

методів обробки даних, зокрема глибокого навчання, забезпечує точний та 

ефективний аналіз великих наборів мікроскопічних зображень, долаючи 

обмеження ручного підрахунку, який є трудомістким і схильним до помилок. 

Останні дослідження підкреслюють важливість щільності продихів як 

біоіндикатора екологічного стресу. Щільність продихів у різних видів рослин 

корелює з рівнем атмосферного CO₂, що дає змогу оцінити реакцію рослин на 

зміни клімату. Аналогічно, Бірлінг Д. Дж. та ін. [1] встановили, що 

забруднення повітря, зокрема від викидів транспорту, може змінювати 

щільність і розподіл продихів, впливаючи на здоров'я рослин та динаміку 

екосистем [1]. Ці результати підкреслюють необхідність розробки надійних 

автоматизованих методів для кількісного аналізу продихів у екологічних 

дослідженнях. 

Існуючі підходи до виявлення продихів включають традиційні методи 

обробки зображень, такі як порогова сегментація та виявлення контурів, а 

також методи на основі машинного навчання. Наприклад, Алмейда А. та ін. [2] 

використали згорткові нейронні мережі (CNN) для виявлення продихів на 

мікроскопічних зображеннях, досягнувши високої точності, але потребуючи 

великих анотованих наборів даних [2]. Однак застосування сучасних 

архітектур виявлення об'єктів, таких як RetinaNet з остовом YOLOv8, 

демонструє перспективи покращення точності та стійкості, особливо для 

складних біологічних зображень. Інтеграція таких моделей з платформами, як 

Supervisely, для анотації даних додатково спрощує процес, дозволяючи 

дослідникам ефективно створювати високоякісні набори даних. 
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Мотивація цього дослідження полягає в необхідності розробки 

надійного та автоматизованого методу для кількісного визначення щільності 

продихів у контексті моніторингу екологічних умов. Використовуючи глибоке 

навчання, це дослідження спрямоване на створення масштабованого рішення 

для аналізу розподілу продихів за різних екологічних умов, з фокусом на грабі 

звичайному (Carpinus betulus), виду, широко поширеному в європейських 

лісах і чутливому до змін навколишнього середовища. 

Мета: Розробити та застосувати нейромережу для автоматичної оцінки 

щільності продихів на мікрознімках листків Carpinus betulus. 

Задачі: 

1. Здійснити збір листя граба та створити мікрознімки продихів для 

формування набору даних. 

2. Створити анотований набір даних для навчання нейромережі та 

провести її навчання. 

3. Провести верифікацію результатів розпізнавання продихів 

нейромережею на тестовому наборі мікрознімків. 

4. Виконати описову статистику отриманих результатів. 
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РОЗДІЛ 1. ОГЛЯД ЛІТЕРАТУРИ 

1.1. Анатомо-фізіологічні особливості продихів листка 

 

Продихи є ключовими структурами листків, які відіграють центральну 

роль у гідрологічному та вуглецевому циклах, регулюючи поглинання 

вуглекислого газу (CO2) для фотосинтезу та втрату води (H2O) через 

транспірацію. Як зазначається, "Продихи відіграють центральну роль у 

гідрологічному та вуглецевому циклах, регулюючи поглинання вуглекислого 

газу (CO2) для фотосинтезу та транспіраційні втрати води (H1O) між 

рослинами та атмосферою." [8]. Кожен продих складається з пари охоронних 

клітин, які контролюють відкриття і закриття пори залежно від тургорного 

тиску, який регулюється іонними потоками через іонні канали [8]. 

Стоматальний комплекс включає пару охоронних клітин і пору між ними, яка 

веде до підстоматальної камери, що є продовженням міжклітинних просторів 

мезофілу [8]. У багатьох рослин поруч зі стоматальними клітинами 

розташовані субсидіарні клітини, які морфологічно відрізняються і сприяють 

регуляції стоматальних рухів [8]. 

Розподіл продихів на листках може бути різним: амфістоматним (на 

обох поверхнях листка), гіпостоматним (на нижній поверхні, наприклад, у 

конського каштана чи липи), епістоматним (на верхній поверхні, як у деяких 

плаваючих рослин), гетеростоматним (переважно на абаксіальній поверхні) 

або ізостоматним (рівномірно на обох поверхнях) [8]. У Carpinus betulus 

спостерігається висока пластичність щільності продихів, тоді як їх розміри 

демонструють мінімальну пластичність, що є адаптацією до змінних 

середовищних умов [2]. Стоматальна провідність у Carpinus betulus була 

досліджена в дубово-грабовому лісі, де " Найвища продихова провідність була 

в освітлених сонцем листків у верхній частині пологу" [1]. Максимальні 

значення провідності спостерігалися опівдні, що вказує на активну 

фізіологічну роль продихів у газообміні [1]. Ця пластичність дозволяє 

Carpinus betulus ефективно адаптуватися до різних умов освітлення та інших 
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середовищних факторів, що є важливим для його виживання в лісах і міських 

середовищах. 

 

1.2. Продихові характеристики як індикатори екологічного стану 

Стоматальні характеристики, такі як щільність, розмір і розподіл, є 

чутливими до середовищних факторів і можуть служити біоіндикаторами 

екологічного стану. Дослідження показують, що "Stomatal density and stomatal 

index are inversely related to atmospheric CO2 concentration" [8], що робить їх 

корисними для оцінки як історичних, так і сучасних змін у навколишньому 

середовищі. Наприклад, у дослідженні Taraxacum officinalis у Генті, Бельгія, 

було виявлено, що " Поверхня продихових пор була на 27% та 21% меншою у 

класах землекористування порт/промисловість та міське землекористування 

порівняно з пасовищами на абаксіальній та адаксіальній поверхнях, 

відповідно. " [5]. Аналогічно, у Plantago lanceolata L. у Генті спостерігалося " 

Значне збільшення щільності та зменшення поверхні пор від приміських до 

міських/промислових районів" [5], що вказує на вплив забруднення на 

стоматальні характеристики. Для Carpinus betulus відображення листків 

використовувалося для оцінки якості міського середовища, де "Зміни 

морфології листків Carpinus betulus L. пов'язані з якістю міського середовища 

існування" [5]. Це підтверджує потенціал стоматальних характеристик як 

біоіндикаторів у міських умовах. 

Хоча прямі дані про щільність продихів у Carpinus betulus у контексті 

забруднення обмежені, чутливість цього виду до середовищних факторів, 

таких як забруднення повітря, дозволяє припустити, що його стоматальні 

характеристики можуть відображати екологічний стан. Наприклад, зменшення 

розміру стоматальних пор у забруднених зонах, як показано для інших видів, 

може бути аналогічним для Carpinus betulus, що робить його цінним для 

моніторингу якості середовища в містах. 
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1.3. Вплив світла, вологи, температури і забруднення на продихову щільність 

Інтенсивність світла є одним із ключових факторів, що впливають на 

щільність продихів у Carpinus betulus. Дослідження показало, що щільність 

продихів зменшувалася зі зменшенням інтенсивності світла від 100% до 25%, 

з 245,69 ± 23,46 до 180,01 ± 16,53 на мм². [3]. Ступінь відкритості продихів 

також зменшувалася, з 98,25% відкритих продихів при повному освітленні до 

35,58% при 25% освітлення, що вказує на пригнічення стоматальної поведінки 

при низькій інтенсивності світла [3]. Це свідчить про те, що світло відіграє 

вирішальну роль у формуванні стоматальної морфології та функціональності. 

Вплив вологи та температури на щільність продихів у Carpinus betulus 

менш вивчений, але загалом ці фактори можуть змінювати стоматальну 

морфологію для оптимізації газообміну. Наприклад, обмеження води не 

змінює щільність продихів, але зменшує їх розмір [8], що вказує на можливі 

адаптації до посухи. Щодо забруднення, дослідження показують, що 

"Кількість продихів чутлива до підвищення рівня CO2 порівняно з 

доіндустріальним рівнем" [9],  що свідчить про зменшення щільності продихів 

при підвищенні концентрації CO2, яка є компонентом забруднення повітря. У 

міських і промислових зонах також спостерігається зменшення розміру 

стоматальних пор, що може бути пов'язано з впливом забруднення [5]. Ці дані 

підкреслюють складну взаємодію середовищних факторів і стоматальних 

характеристик, що потребує подальших досліджень для Carpinus betulus. 
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1.4. Методи мікроскопування та ручного аналізу продихів 

Традиційні методи аналізу продихів включають світлову мікроскопію та 

скануючу електронну мікроскопію (СЕМ). У дослідженні Carpinus betulus 

використовувалася СЕМ для спостереження за поверхнею листків і оцінки 

щільності та розміру продихів: " Щільність продихів (кількість/мм²) і розмір 

продихів (довжина і ширина)." [3]. СЕМ забезпечує високу роздільну 

здатність, дозволяючи детально вивчати морфологію продихів, але є 

трудомістким і дорогим методом. 

Інший поширений метод — техніка відбитків нігтьового лаку, яка 

дозволяє створювати відбитки листкової поверхні для подальшого аналізу під 

мікроскопом: " Використання прозорого лаку для нігтів є традиційним 

методом вимірювання щільності продихів, оскільки виготовлення зліпка і 

перегляд його під мікроскопом можна виконати за один урок " [10]. Цей метод 

є простим і доступним, але може бути менш ефективним для листків із 

товстою кутикулою або нерівною поверхнею, таких як у деяких рослин. 

Сучасні методи включають швидке забарвлення листків за допомогою 

Rhodamine 6G, що дозволяє швидко отримувати зображення і аналізувати 

щільність продихів без необхідності створення відбитків: "Фарбування 

продихів займає всього 1-2 хвилини, можна створювати знімки продихів через 

короткі проміжки часу" [6]. Цей метод є особливо корисним для 

високопродуктивного аналізу, оскільки він мінімізує маніпуляції з листком і 

дозволяє проводити послідовні вимірювання на одному й тому ж листку. 
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1.5. Методи глибокого навчання у розпізнаванні об’єктів (YOLO, RetinaNet) 

Глибоке навчання революціонізувало аналіз біологічних зображень, 

зокрема для автоматизованого розпізнавання та вимірювання продихів. 

Удосконалена модель YOLO була використана для автоматичного виявлення 

продихів у листках кукурудзи, досягнувши точності 95,3%: " Запропоновано 

вдосконалену модель глибокого навчання YOLO для автоматичного 

розпізнавання продихів " [7]. YOLO є одностадійною моделлю, яка прогнозує 

локалізацію та ймовірності класів безпосередньо з повного зображення, що 

забезпечує швидкість і ефективність [7]. Модифікації YOLOv5, такі як 

оптимізовані предиктори та спрощені шари зменшення вибірки, зменшили 

кількість помилкових виявлень і підвищили ефективність розпізнавання [7]. 

RetinaNet, інша потужна модель, використовує Focal Loss для вирішення 

проблеми несбалансованості класів у задачах детекції об’єктів: "RetinaNet - це 

одноетапна модель виявлення об'єктів, яка використовує функцію фокусних 

втрат для усунення дисбалансу класів під час навчання" [11]. Ця модель є 

особливо ефективною для складних зображень із великою кількістю об’єктів, 

таких як мікроскопічні зображення продихів. Хоча прямі дослідження 

застосування RetinaNet для виявлення продихів обмежені, її архітектура, що 

включає Feature Pyramid Network (FPN) і ResNet, робить її перспективною для 

аналізу біологічних зображень [11]. 

Обидві моделі можуть бути адаптовані для аналізу продихів у Carpinus 

betulus, забезпечуючи швидке та точне визначення їхньої щільності та 

морфологічних характеристик. Застосування таких моделей може значно 

прискорити екологічний моніторинг і дослідження фізіології рослин, 

зменшуючи трудомісткість порівняно з традиційними методами. 
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РОЗДІЛ 2. МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕНЬ 

 

2.1. Збір зразків листя граба 

У рамках експериментального етапу дослідження зразки листя Carpinus 

betulus (грабу звичайного) були зібрані восени 2024 року на території 

лісопаркової зони м. Вінниця. Час проведення відбору зразків (початок осені) 

було обрано з урахуванням активної функціональної діяльності листкового 

апарату, оскільки саме в цей період продиховий апарат зберігає високу 

морфологічну чіткість та інформативність для ботанічного аналізу. 

Відбір здійснювався з дерев приблизно однакового віку, на рівні 

середнього ярусу, тобто з гілок, що отримують подібний рівень освітлення. Це 

дало змогу зменшити варіативність результатів, зумовлену 

мікрокліматичними відмінностями на різних рівнях крони. 

Особливістю збору було те, що зразки бралися з двох контрастних 

екологічних ділянок: 

1. Перша ділянка — зона з підвищеним антропогенним 

навантаженням, безпосередньо біля автомобільної траси з інтенсивним рухом 

транспорту. Цей район характеризується підвищеним рівнем забруднення 

повітря, що потенційно впливає на фізіологічні процеси у рослин. 

2. Друга ділянка — розташована в глибині лісопарку, далеко від 

магістралей та міського впливу. Вона слугувала як умовно контрольна зона з 

відносно чистим повітрям і стабільним мікрокліматом. 

Таке зонування дозволило порівняти щільність продихів у листках, 

сформованих у різних умовах забруднення довкілля, що є важливим аспектом 

для фітоіндикаційних досліджень. 

Після збору листків проводився етап підготовки епідермальних 

відбитків для мікроскопічного аналізу. Для цього використовувалась 

методика лаково-скотчевих реплік, яка забезпечує високоякісне 

відтворення рельєфу епідермального шару. 
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На нижню (абаксіальну) сторону кожного листка наносився тонкий шар 

прозорого лаку. Після висихання лакового шару до нього приклеювався 

прозорий канцелярський скотч, який потім різким рухом знімався разом із 

лаковою плівкою. Ця плівка містила рельєфне зображення поверхні епідерми, 

зокрема продихів. Вона приклеювалася до предметного скла, забезпечуючи 

прозорість і щільність прилягання до основи. У деяких випадках поверхню 

фіксували покривним склом, щоб уникнути спотворень фокусу під час 

мікроскопування. 

Фотографування здійснювалося за допомогою біологічного мікроскопа 

зі вбудованою цифровою камерою при збільшенні ×400. Кожен препарат 

фіксувався у кількох зонах зображення, що дозволяло врахувати локальну 

неоднорідність розташування продихів. 

Під час роботи з мікроскопічною апаратурою виявлено низку технічних 

труднощів, які можуть впливати на якість цифрових мікрознімків і, 

відповідно, на подальшу точність нейромережевого аналізу. Основною 

проблемою виявилося нерівномірне фокусування в межах одного поля 

зору. При спробах навести різкість у центрі поля, зображення на периферії 

часто втрачало чіткість, і навпаки. Подібні викривлення глибини різкості 

притаманні мікроскопам із обмеженою глибиною різко зображуваної зони. 

Ще одна виявлена проблема полягала у відмінності якості зображення 

через окуляр та через цифрову камеру. Через камеру фіксувалося 

зображення нижчої контрастності та меншої чіткості. Це можна частково 

вирішити за рахунок використання камери з вищою роздільною здатністю або 

ручного коригування експозиції, яскравості та балансу білого перед зйомкою. 

Підготовка зразків для мікроскопування є одним з ключових етапів 

дослідження продихів, що забезпечує точність і відтворюваність результатів. 

У межах цього дослідження підготовка зразків моделювалася відповідно до 

класичної методики виготовлення епідермальних відбитків листкової 

поверхні, які зберігають морфологічну структуру епідерми і дозволяють 

ідентифікувати та підраховувати продихи. Вибір методу моделювання 
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обґрунтований тим, що вивчення проводиться за допомогою глибокого 

навчання, де моделювання типових процесів може бути достатнім для 

формування тренувальних і тестових датасетів. 
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2.2. Анотація даних за допомогою платформи Supervisely 

Для анотації набору даних використано платформу Supervisely 

(https://supervisely.com), яка завдяки зручному інтерфейсу та потужним 

інструментам для маркування зображень є оптимальним вибором для задач 

комп'ютерного зору. Supervisely це веб-платформа, призначена для створення, 

управління та анотації наборів даних для машинного навчання. У рамках 

дослідження було створено новий проєкт, до якого завантажено 50 

мікроскопічних зображень відбитків листків. Було визначено два класи 

об'єктів: «продих» для чітко ідентифікованих продихів та «незрозумілий 

об'єкт» для структур, подібних до продихів, але з нечіткими діагностичними 

ознаками. Анотація проводилася за допомогою інструменту «Bounding Box 

(Rectangle) Tool», який дозволив точно окреслити продихи шляхом створення 

прямокутних рамок навколо кожної ідентифікованої структури. Кожне 

зображення ретельно перевірялось для забезпечення точності маркування, при 

цьому на кожному зображенні анотовано приблизно 60-80 продихів залежно 

від їхньої щільності. Анотований набір даних експортовано у форматі COCO 

(Common Objects in Context), який є стандартним для задач виявлення об'єктів 

і містить метадані зображень, координати обмежувальних рамок та мітки 

класів у структурі JSON.  

 

https://supervisely.com/
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Рис. 2.1 - Приклад інтерфейсу інструменту «Bounding Box (Rectangle) Tool» у 

Supervisely, використаного для анотації продихів на мікроскопічних 

зображеннях відбитків листків Carpinus betulus. 
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2.3. Архітектура нейромережі для виявлення продихів 

 

Для виявлення продихів використано згорткову нейронну мережу 

RetinaNet, яка є сучасною архітектурою для точного та ефективного виявлення 

об'єктів. RetinaNet вирішує проблему дисбалансу класів у задачах виявлення 

об'єктів шляхом використання функції втрат Focal Loss, яка приділяє більше 

уваги складним для класифікації прикладам. Модель реалізовано за 

допомогою бібліотеки KerasCV, високорівневого API на базі TensorFlow, що 

спрощує розробку моделей комп'ютерного зору. KerasCV надає попередньо 

навчені моделі та інструменти для аугментації даних і навчання моделей, що 

робить її придатною для аналізу біологічних зображень. 

Остовом моделі RetinaNet обрано YOLOv8 (You Only Look Once, версія 

8), зокрема середній варіант (yolo_v8_m_backbone). YOLOv8, розроблений 

компанією Ultralytics, є еволюцією сімейства моделей YOLO, відомих своєю 

здатністю до виявлення об'єктів у реальному часі. На відміну від традиційних 

двоступеневих детекторів, YOLOv8 використовує одноступеневу архітектуру, 

яка одночасно прогнозує обмежувальні рамки та ймовірності класів, 

забезпечуючи баланс між швидкістю та точністю. Остов YOLOv8 витягує 

карти ознак на різних масштабах, які потім обробляються мережею піраміди 

ознак (FPN) RetinaNet для виявлення об'єктів різного розміру. Це особливо 

корисно для виявлення продихів, оскільки вони варіюються за розміром і 

щільністю на мікроскопічних зображеннях. Поєднання функції втрат Focal 

Loss від RetinaNet та ефективного витягування ознак YOLOv8 робить цю 

архітектуру оптимальною для виявлення малих і щільно розташованих 

об'єктів, таких як продихи, на складних біологічних зображеннях. 

Вхідні зображення стандартизовано до роздільної здатності 512x512 

пікселів відповідно до вимог моделі. Для підвищення стійкості моделі 

застосовано техніки аугментації даних за допомогою шарів попередньої 

обробки KerasCV, зокрема RandomCrop для випадкового вирізання 

фрагментів розміром 512x512 пікселів із більших мікроскопічних зображень 
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і RandomFlip для введення випадкових горизонтальних і вертикальних 

віддзеркалень. Ці аугментації застосовувалися чотири рази до кожного 

зображення, розширюючи початковий набір даних із 50 зображень до 200 

навчальних прикладів, які поділено на 80% тренувальних (160 зображень) і 

20% валідаційних (40 зображень). Така стратегія аугментації зменшує ризик 

перенавчання та покращує здатність моделі до узагальнення на нових даних. 

Переваги обраної архітектури: 

• Focal Loss: Вирішує проблему дисбалансу класів, зосереджуючись на 

складних прикладах, що покращує виявлення малих продихів на 

складному тлі. 

• Остов YOLOv8: Забезпечує ефективне витягування ознак і виявлення 

на різних масштабах, що критично важливо для ідентифікації продихів 

різного розміру. 

• Інтеграція з KerasCV: Спрощує конфігурацію та навчання моделі, 

дозволяючи швидко створювати прототипи та проводити експерименти. 
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2.4. Навчання нейромережі 

 

Навчання нейромережі проводилося за допомогою скрипту на мові 

Python, розробленого на кафедрі біофізики та фізіології з використанням 

бібліотек TensorFlow та KerasCV. Скрипт виконував такі основні функції: 

 

Завантаження набору даних у форматі COCO. 

Поділ набору даних на навчальний (80%) і валідаційний (20%) набори. 

Ініціалізація моделі RetinaNet з основою YOLOv8. 

Навчання моделі із заданими гіперпараметрами. 

Навчання проводилося на хмарній платформі Google Colab, яка надає 

доступ до високопродуктивних графічних процесорів, усуваючи необхідність 

локальної конфігурації обладнання. Роздільна здатність вхідних зображень 

була встановлена на рівні 512x512 пікселів, а розмір партії - 4, щоб 

збалансувати обмеження на пам'ять та ефективність навчання. Модель було 

сконфігуровано з наступними параметрами: 

 

Оптимізатор: Стохастичний градієнтний спуск (SGD) зі швидкістю 

навчання 0.005, імпульсом 0.9 та глобальним відсіканням градієнта на рівні 

10.0 для запобігання вибухових градієнтів. 

Функції втрат: Фокальні втрати для класифікації для усунення 

дисбалансу класів і згладжені L1 втрати для регресії в обмежувальній рамці 

для забезпечення точної локалізації. 

Зворотні виклики: Зворотний виклик ModelCheckpoint зберіг модель з 

найменшими втратами при валідації, а CSVLogger записав метрики навчання 

для аналізу. 

Модель навчалася протягом 200 епох, що зайняло приблизно 120 хвилин 

на графічному процесорі Google Colab. Навчальний набір даних складався з 

160 доповнених зображень, а валідаційний набір даних включав 40 зображень. 

Використаний код наведено нижче: 
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Рис. 2.2 - фрагмент кода для ініціалізації моделі RetinaNet з опорною 

мережею YOLOv8, налаштування оптимізатора, компіляції моделі та 

визначення келбеків. 
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РОЗДІЛ 3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ 

 

3.1. Збір зразків листя граба 

Підготовка мікроскопічних слайдів за допомогою техніки відбитків 

лаком для нігтів виявила кілька проблем, пов'язаних з якістю зображення. 

Однією з важливих проблем була нерівномірна різкість по всьому полю зору. 

Фокусування мікроскопа на центрі зображення часто призводило до розмиття 

країв, і навпаки. Це явище, відоме як обмеження глибини різкості, є 

поширеним у мікроскопії при великих збільшеннях і може бути усунене за 

допомогою накладання фокусів - методу, коли кілька зображень, зроблених у 

різних фокальних площинах, об'єднуються для створення одного зображення 

з підвищеною різкістю по всьому полю. Фокусування успішно застосовується 

в ботанічній мікроскопії для покращення чіткості зображень продихів. Однак 

через обмеження обладнання ця методика не була застосована в даному 

дослідженні, а пріоритетними були зображення з оптимальним центральним 

фокусом. [12] 

Іншою проблемою була розбіжність між якістю зображення, що 

спостерігається через окуляр мікроскопа, і зображенням, зафіксованим 

цифровою камерою. Окуляр давав чіткіші та детальніші зображення, 

ймовірно, через обмежену роздільну здатність камери. Модернізація камери з 

вищою роздільною здатністю або використання спеціальної камери 

мікроскопа з більшим сенсором може вирішити цю проблему. [13] 
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3.2. Анотація продихів за допомогою платформи Supervisely 

 

Процес анотації розпочався зі створення нового проєкту на платформі 

Supervisely, після чого було завантажено 50 мікроскопічних зображень 

відбитків листків Carpinus betulus. Визначено два класи об'єктів: «продих» для 

однозначно ідентифікованих продихів і «незрозумілий об'єкт» для структур, 

що нагадують продихи, але важко класифікуються. Для анотації використано 

інструмент «Bounding Box (Rectangle) Tool», який дозволив окреслити 

приблизно 60-80 продихів на кожному зображенні залежно від їхньої 

щільності. Анотований набір даних, що складався з 50 зображень із 

координатами обмежувальних рамок і мітками класів, експортовано у форматі 

COCO для сумісності з фреймворком KerasCV. 

 

 

Рис. 3.1. – Інтерфейс створення нового проекту 

на платформі Supervisley 

 

Рис. 3.2. – Визначення двох класів об'єктів  

(«продих» та «незрозумілий об'єкт») у проєкті Supervisely. 
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Рис. 3.3. - Приклад анотованого мікроскопічного зображення у 

Supervisely, на якому продихи обведено обмежувальними рамками. 
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Рис. 3.4. - Приклади анотованих зображень із експортованого набору 

даних у форматі COCO, що показують продихи з обмежувальними 

рамками. 

 

Рис. 3.5. - Приклади анотованих зображень із експортованого набору 

даних у форматі COCO, що показують продихи з обмежувальними 

рамками. (Продовження) 
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Рис. 3.6. - Приклади анотованих зображень із експортованого набору 

даних у форматі COCO, що показують продихи з обмежувальними 

рамками. (Продовження) 
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3.3. Навчання нейромережі 

 

Навчання проводилося на платформі Google Colab, яка забезпечує 

доступ до потужних графічних процесорів і не потребує локального 

налаштування обладнання. Модель RetinaNet з остовом YOLOv8 навчалася 

протягом 200 епох, при цьому процес відстежувався за метриками втрат, 

включаючи втрату класифікації (Focal Loss), втрату обмежувальної рамки 

(Smooth L1) та загальну втрату. Прогрес навчання візуалізовано на наступних 

рисунках: 

 

  

Рис. 3.7. - Вивід команди model.fit, що показує прогрес навчання. 
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Рис. 3.8. - Графіки залежності втрат обмежувальної рамки, втрат класифікації 

та загальних втрат від номера епохи для тренувального та валідаційного 

наборів даних. 

Метрики втрат продемонстрували швидке зниження протягом перших 

20 епох, що свідчить про ефективне вивчення ознак продихів. Після цього 

тренувальна втрата продовжувала поступово зменшуватися, тоді як 

валідаційна втрата стабілізувалася приблизно на 100-й епосі та почала дещо 
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зростати після 120-ї епохи, що вказує на перенавчання. Перенавчання виникає, 

коли модель запам'ятовує специфічні закономірності тренувальних даних, які 

не узагальнюються на нові дані. Для зменшення перенавчання використано 

callback ModelCheckpoint, який зберігав ваги моделі з найменшою 

валідаційною втратою, забезпечуючи збереження найкращої моделі. 

Для усунення перенавчання можна застосувати такі стратегії: 

• Раннє зупинення: Припинити навчання, коли валідаційна втрата 

перестає зменшуватися, наприклад, після 100--120 епох. 

• Аугментація даних: Збільшити різноманітність тренувального набору 

шляхом додаткових аугментацій, таких як випадкові повороти, 

масштабування або корекція яскравості. 

• Регуляризація: Застосувати методи, такі як dropout або затухання ваг, 

для запобігання запам'ятовуванню тренувальних даних. 

• Збільшення набору даних: Хоча обмеження пам'яті обмежували розмір 

набору даних, включення більш різноманітних зображень могло б 

покращити узагальнення. 
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3.4. Виявлення продихів на нових мікрознімках 

 

Навчена модель була застосована до 150 нових мікроскопічних 

зображень, які не входили до тренувального або валідаційного наборів. 

Оскільки початкові зображення були більшими за розмір вхідного зображення 

моделі (512x512 пікселів), кожне зображення поділялося на фрагменти, що 

перекриваються, з шириною перекриття, приблизно вдвічі більшою за типову 

ширину продихів, для забезпечення повного покриття. Прогнози з цих 

фрагментів об'єднувалися для реконструкції повного зображення, при цьому 

перекривні області зливалися, щоб уникнути дублювання виявлень. Модель 

успішно виявила продихи на цих зображеннях, результати узагальнено в  табл. 

3.1. 

Табл. 3.1. – Результати верифікації моделі на незалежному тестовому 

наборі. 

Назва 

зображення 

Виявлені 

продихи 

Хибнонегативні Хибнопозитивні Справжня 

кількість 

продихів 

00001 71 47 0 118 

00002 73 43 3 119 

00003 68 54 4 118 

00004 70 39 1 110 

00005 75 39 3 111 

00006 69 41 2 108 

00007 84 45 1 129 

00008 94 46 3 137 

00009 63 58 2 119 

00010 77 45 3 119 

 

Таблиця показує, що модель виявляла приблизно 74 продихи на зображення, з 

40-50 хибнонегативними (пропущеними продихами) та 0-4 хибнопозитивними 
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(неправильно ідентифікованими структурами). Справжня кількість продихів 

розраховувалася як кількість виявлених продихів мінус хибнопозитивні плюс 

хибнонегативні. Низький рівень хибнопозитивних результатів свідчить про високу 

специфічність, тоді як хибнонегативні результати вказують на можливості для 

покращення, можливо, через варіації в якості зображень або зовнішньому вигляді 

продихів. 

 
Рис. 3.9. - Приклади нових мікроскопічних зображень із продихами, обведеними 

обмежувальними рамками, передбаченими навченої нейромережею. 
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3.5. Покращення точності моделі. 

 Ми спробували покращити точність моделі та зменшити перенавчання. 

Для цього ми збільшили набір даних додавши в нього мікрознімки які містили 

значну кількість помилок детекції. Також ми використовували алгоритм 

оптимізації Адама. Прогрес навчання нової моделі візуалізовано на рисунку ... 

Рис. 3.5. - Графіки залежності втрат обмежувальної рамки, втрат класифікації 

та загальних втрат від номера епохи для тренувального та валідаційного 

наборів даних. 

 

Результати виявлення продихів узагальнено в табл.  3.2. 

Табл. 3.1. – Результати верифікації моделі на покращеному тестовому 

наборі. 

Назва 

зображення 

Виявлені 

продихи 

Хибнонегативні Хибнопозитивні Справжня 

кількість 

продихів 

00001 115 5 2 118 

00002 115 6 2 119 

00003 114 7 3 118 

00004 110 4 4 110 

00005 107 10 6 111 

00006 107 5 4 108 

00007 129 5 5 129 

00008 136 7 6 137 

00009 126 4 11 119 

00010 119 4 4 119 

 

 Таблиця показує, що модель виявляла приблизно 117 продихів на 

зображення, з 4-10 хибнонегативними (пропущеними продихами) та 2-
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11 хибнопозитивними (неправильно ідентифікованими структурами). Низький 

рівень хибнопозитивних результатів свідчить про високу специфічність, тоді 

як хибнонегативні результати вказують на можливості для покращення, 

можливо, через варіації в якості зображень або зовнішньому вигляді продихів. 

 

Рис. 3.10. - Приклади нових мікроскопічних зображень із продихами, 

обведеними обмежувальними рамками, передбаченими навченої 

нейромережею (00001. Jpg).
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ВИСНОВКИ 

 

Дослідження успішно вирішило поставлені задачі, що дозволило 

зробити наступні висновки: 

1. Збір зразків листя та створення мікрознімків: Зразки листя Carpinus 

betulus були зібрані з двох екологічно різних ділянок у Вінниці, Україна, 

що дало змогу дослідити щільність продихів за різних рівнів 

забруднення. Техніка відбитків лаком для нігтів виявилася ефективною 

для підготовки мікроскопічних слайдів, хоча проблеми з неоднорідною 

різкістю та роздільною здатністю камери вказують на необхідність 

використання передових методів зображення, таких як фокусне 

накладання або камери з вищою роздільною здатністю. 

2. Створення та навчання набору даних для нейромережі: Набір даних 

із 50 мікроскопічних зображень було анотовано за допомогою 

платформи Supervisely, отримавши набір даних у форматі COCO з двома 

класами: «продих» і «незрозумілий об'єкт». Аугментація даних 

розширила набір до 200 зображень, які використано для навчання моделі 

RetinaNet з остовом YOLOv8. Модель досягла значного прогресу в 

навчанні протягом 20 епох, хоча після 120 епох спостерігалося 

перенавчання, що було усунуто збереженням найкращих ваг моделі. 

3. Верифікація результатів розпізнавання продихів: Навчена модель 

була застосована до 150 нових зображень, продемонструвавши 

виявлення продихів із приблизно 70 виявленнями на зображення, 40-50 

хибнонегативними та мінімальними хибнопозитивними результатами. В 

результаті збільшення набору даних, а також використання алгоритму 

оптимізації Адама було покращено точність моделі до результату 

приблизно 117 продихів на зображення з яких лише 4-10 

хибнонегативні. 
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В цілому ці результати демонструють можливість використання 

глибокого навчання для автоматизованого аналізу продихів, що має значення 

для екологічного моніторингу та досліджень фізіології рослин. Подальші 

роботи мають бути спрямовані на розширення набору даних, впровадження 

розширених технік аугментації та дослідження альтернативних архітектур для 

підвищення точності виявлення. 
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ДЕКЛАРАЦІЯ АКАДЕМІЧНОЇ ДОБРОЧЕСНОСТІ 

 Усвідомлюючи свою відповідальність за надання неправдивої 

інформації, стверджую, що подана кваліфікаційна (бакалаврська) робота на 

тему: «ВИЯВЛЕННЯ ТА КІЛЬКІСНЕ ВИЗНАЧЕННЯ ЩІЛЬНОСТІ 

ПРОДИХІВ У ЛИСТКАХ CARPINUS BETULUS L. ІЗ ЗАСТОСУВАННЯМ 

МЕТОДІВ ГЛИБОКОГО НАВЧАННЯ» є написано мною особисто. 

- Одночасно заявляю, що ця робота: 

- Не передавалась іншим особам і подається до захисту вперше; 

- Не порушує авторських та суміжних прав, закріплених статтями 21-25 

Закону України «Про авторське право та суміжні права»; 

- Не отримувалась іншими особами, а також дані та інформація не 

отримувались у недозволений спосіб.  

Я усвідомлюю, що у разі порушення цього порядку моя кваліфікаційна 

робота буде відхилена без права її захисту, або під час захисту за неї буде 

поставлена оцінка «незадовільно».  

 

 

 

«_____» ___________ 2025 р.    ______________________ 

 


